Documentation Verification Report

ADEInequality

πŸ“ Source: Mathlib/NumberTheory/ADEInequality.lean

Statistics

MetricCount
DefinitionsA, A', Admissible, D', E', E6, E7, E8, sumInv
9
Theoremsone_lt_sumInv, admissible_A', admissible_D', admissible_E'3, admissible_E'4, admissible_E'5, admissible_E6, admissible_E7, admissible_E8, admissible_of_one_lt_sumInv, admissible_of_one_lt_sumInv_aux, admissible_of_one_lt_sumInv_aux', classification, lt_four, lt_six, lt_three, sumInv_pqr
17
Total26

ADEInequality

Definitions

NameCategoryTheorems
A πŸ“–CompOpβ€”
A' πŸ“–CompOp
1 mathmath: admissible_A'
Admissible πŸ“–MathDef
12 mathmath: admissible_E7, admissible_of_one_lt_sumInv, admissible_of_one_lt_sumInv_aux, admissible_E6, admissible_of_one_lt_sumInv_aux', admissible_E'4, admissible_A', admissible_E'5, admissible_E8, classification, admissible_E'3, admissible_D'
D' πŸ“–CompOp
1 mathmath: admissible_D'
E' πŸ“–CompOp
3 mathmath: admissible_E'4, admissible_E'5, admissible_E'3
E6 πŸ“–CompOp
1 mathmath: admissible_E6
E7 πŸ“–CompOp
1 mathmath: admissible_E7
E8 πŸ“–CompOp
1 mathmath: admissible_E8
sumInv πŸ“–CompOp
3 mathmath: sumInv_pqr, Admissible.one_lt_sumInv, classification

Theorems

NameKindAssumesProvesValidatesDepends On
admissible_A' πŸ“–mathematicalβ€”Admissible
A'
β€”β€”
admissible_D' πŸ“–mathematicalβ€”Admissible
D'
β€”β€”
admissible_E'3 πŸ“–mathematicalβ€”Admissible
E'
PNat
instOfNatPNatOfNeZeroNat
β€”β€”
admissible_E'4 πŸ“–mathematicalβ€”Admissible
E'
PNat
instOfNatPNatOfNeZeroNat
β€”β€”
admissible_E'5 πŸ“–mathematicalβ€”Admissible
E'
PNat
instOfNatPNatOfNeZeroNat
β€”β€”
admissible_E6 πŸ“–mathematicalβ€”Admissible
E6
β€”admissible_E'3
admissible_E7 πŸ“–mathematicalβ€”Admissible
E7
β€”admissible_E'4
admissible_E8 πŸ“–mathematicalβ€”Admissible
E8
β€”admissible_E'5
admissible_of_one_lt_sumInv πŸ“–mathematicalsumInv
PNat
Multiset
Multiset.instInsert
Multiset.instSingleton
Admissibleβ€”instIsTransLe
instAntisymmLe
LE.total
List.Pairwise.sortedLE
Multiset.pairwise_sort
Multiset.sort_eq
admissible_of_one_lt_sumInv_aux
Multiset.length_sort
Multiset.card_cons
Multiset.card_singleton
admissible_of_one_lt_sumInv_aux πŸ“–mathematicalList.SortedLE
PNat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
sumInv
Multiset.ofList
Admissibleβ€”instIsEmptyFalse
List.SortedLE.pairwise
admissible_of_one_lt_sumInv_aux'
admissible_of_one_lt_sumInv_aux' πŸ“–mathematicalPNat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
sumInv
Multiset
Multiset.instInsert
Multiset.instSingleton
Admissibleβ€”lt_three
Finset.mem_Iio
admissible_A'
lt_four
Finset.mem_Ico
admissible_D'
lt_six
admissible_E6
admissible_E7
admissible_E8
classification πŸ“–mathematicalβ€”sumInv
PNat
Multiset
Multiset.instInsert
Multiset.instSingleton
Admissible
β€”admissible_of_one_lt_sumInv
Admissible.one_lt_sumInv
lt_four πŸ“–mathematicalPNat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
sumInv
Multiset
Multiset.instInsert
instOfNatPNatOfNeZeroNat
Multiset.instSingleton
Preorder.toLTβ€”Nat.instAtLeastTwoHAddOfNat
IsStrictOrderedRing.toIsOrderedRing
Rat.instIsStrictOrderedRing
Rat.nontrivial
Mathlib.Tactic.Contrapose.contrapose₁
sumInv_pqr
LE.le.trans
inv_le_invβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Rat.instAddLeftMono
Rat.instZeroLEOneClass
Rat.instCharZero
add_le_add
covariant_swap_add_of_covariant_add
le_rfl
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
lt_six πŸ“–mathematicalsumInv
PNat
Multiset
Multiset.instInsert
instOfNatPNatOfNeZeroNat
Multiset.instSingleton
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
β€”Nat.instAtLeastTwoHAddOfNat
IsStrictOrderedRing.toIsOrderedRing
Rat.instIsStrictOrderedRing
Rat.nontrivial
Mathlib.Tactic.Contrapose.contrapose₁
sumInv_pqr
inv_le_invβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Rat.instAddLeftMono
Rat.instZeroLEOneClass
Rat.instCharZero
add_le_add
covariant_swap_add_of_covariant_add
le_rfl
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
lt_three πŸ“–mathematicalPNat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
sumInv
Multiset
Multiset.instInsert
Multiset.instSingleton
Preorder.toLT
instOfNatPNatOfNeZeroNat
β€”Nat.instAtLeastTwoHAddOfNat
IsStrictOrderedRing.toIsOrderedRing
Rat.instIsStrictOrderedRing
Rat.nontrivial
Mathlib.Tactic.Contrapose.contrapose₁
sumInv_pqr
LE.le.trans
inv_le_invβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Rat.instAddLeftMono
Rat.instZeroLEOneClass
Rat.instCharZero
add_le_add
covariant_swap_add_of_covariant_add
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
sumInv_pqr πŸ“–mathematicalβ€”sumInv
PNat
Multiset
Multiset.instInsert
Multiset.instSingleton
PNat.val
β€”Multiset.map_cons
Multiset.sum_cons
Multiset.sum_singleton
add_assoc

ADEInequality.Admissible

Theorems

NameKindAssumesProvesValidatesDepends On
one_lt_sumInv πŸ“–mathematicalADEInequality.AdmissibleADEInequality.sumInvβ€”eq_1
ADEInequality.A'.eq_1
ADEInequality.sumInv_pqr
add_assoc
Nat.cast_one
inv_one
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Rat.instAddLeftMono
contravariant_lt_of_covariant_le
add_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Rat.instIsStrictOrderedRing
IsStrictOrderedRing.toIsOrderedRing
Rat.nontrivial
ADEInequality.D'.eq_1
Mathlib.Meta.NormNum.IsNNRat.to_eq
Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Rat.instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
add_halves
ZeroLEOneClass.neZero.two
Rat.instZeroLEOneClass
NeZero.charZero_one
ADEInequality.E'.eq_1
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero

---

← Back to Index