Documentation Verification Report

Defs

πŸ“ Source: Mathlib/NumberTheory/ArithmeticFunction/Defs.lean

Statistics

MetricCount
DefinitionsIsMultiplicative, add, instAddCommGroup, instAddCommMonoid, instAddGroup, instAddMonoid, instAddMonoidWithOne, instCommRing, instCommSemiring, instFunLikeNat, instModule, instMonoid, instMul, instNeg, instSMul, instSemiring, intCoe, natCoe, natToArithmeticFunction, ofInt, one, zero, instInhabitedArithmeticFunction
23
Theoremseq_iff_eq_on_prime_powers, eq_zero_of_squarefree_of_dvd_eq_zero, iff_ne_zero, intCast, lcm_apply_mul_gcd_apply, map_div_of_coprime, map_gcd, map_lcm, map_mul_of_coprime, map_one, map_prod, map_prod_of_prime, map_prod_of_subset_primeFactors, mul, multiplicative_factorization, natCast, prod_primeFactors, add_apply, coe_coe, coe_inj, coe_mk, ext, ext_iff, intCoe_apply, intCoe_int, intCoe_mul, intCoe_one, isMultiplicative_one, map_zero, mul_apply, mul_apply_one, mul_smul', natCoe_apply, natCoe_mul, natCoe_nat, natCoe_one, neg_apply, one_apply, one_apply_ne, one_one, one_smul', smul_apply, toFun_eq, zero_apply
44
Total67

ArithmeticFunction

Definitions

NameCategoryTheorems
IsMultiplicative πŸ“–MathDef
11 mathmath: isMultiplicative_one, isMultiplicative_zeta, isMultiplicative_pow, isMultiplicative_sigma, IsMultiplicative.prodPrimeFactors, isMultiplicative_moebius, IsMultiplicative.iff_ne_zero, BoundingSieve.nu_mult, isMultiplicative_id, DirichletCharacter.isMultiplicative_toArithmeticFunction, DirichletCharacter.isMultiplicative_zetaMul
add πŸ“–CompOp
2 mathmath: IsMultiplicative.prodPrimeFactors_add_of_squarefree, add_apply
instAddCommGroup πŸ“–CompOpβ€”
instAddCommMonoid πŸ“–CompOpβ€”
instAddGroup πŸ“–CompOpβ€”
instAddMonoid πŸ“–CompOpβ€”
instAddMonoidWithOne πŸ“–CompOpβ€”
instCommRing πŸ“–CompOpβ€”
instCommSemiring πŸ“–CompOpβ€”
instFunLikeNat πŸ“–CompOp
190 mathmath: vonMangoldt.residueClass_eq, BoundingSieve.nu_lt_one_of_dvd_prodPrimes, LSeries.convolution_one_eq_convolution_zeta, sigma_pos, EisensteinSeries.hasSum_e2Summand_symmetricIcc, cardFactors_pow, carmichael_pow_of_prime_ne_two, IsMultiplicative.map_prod_of_subset_primeFactors, cardFactors_multiset_prod, zeta_apply, cardDistinctFactors_apply, sum_Ioc_mul_zeta_eq_sum, moebius_eq_or, cardFactors_apply, moebius_ne_zero_iff_eq_or, DirichletCharacter.LSeries_twist_vonMangoldt_eq, cardDistinctFactors_apply_prime_pow, pmul_apply, LSeries_zeta_mul_Lseries_moebius, neg_apply, sigma_apply, abscissaOfAbsConv_zeta, cardDistinctFactors_apply_prime, sigma_one_apply_prime_pow, prod_eq_iff_prod_pow_moebius_eq, IsMultiplicative.prodPrimeFactors_add_of_squarefree, moebius_sq, DirichletCharacter.zetaMul_prime_pow_nonneg, Chebyshev.psi_sub_theta_eq_sum_not_prime, moebius_apply_one, not_LSeriesSummable_moebius_at_one, moebius_apply_prime_pow, moebius_eq_zero_of_not_squarefree, prod_eq_iff_prod_pow_moebius_eq_on_of_nonzero, sigma_zero_apply, smul_apply, cardDistinctFactors_eq_zero, vonMangoldt.residueClass_apply, IsMultiplicative.multiplicative_factorization, coe_mul, moebius_apply_of_squarefree, IsMultiplicative.map_gcd, one_apply_ne, two_mul_carmichael_two_pow_of_three_le_eq_totient, tsum_pow_div_one_sub_eq_tsum_sigma, sigma_apply_prime_pow, one_eq_delta, LSeries_zeta_eq, IsMultiplicative.map_prod_of_prime, pow_carmichael, cardFactors_pos_iff_one_lt, zeta_pos, DirichletCharacter.LSeries.mul_mu_eq_one, LSeries_vonMangoldt_eq_deriv_riemannZeta_div, sigma_eq_zero, coe_mk, carmichael_two_pow_of_le_two, sigma_one_apply, EisensteinSeries.hasSum_e2Summand_symmetricIco, convolution_vonMangoldt_const_one, EisensteinSeries.q_expansion_riemannZeta, moebius_apply_prime, cardFactors_eq_sum_factorization, convolution_vonMangoldt_zeta, DirichletCharacter.zetaMul_nonneg, sigma_pos_iff, BoundingSieve.nu_lt_one_of_prime, sigma_one, IsMultiplicative.prod_primeFactors, log_apply, vonMangoldt_pos_iff, carmichael_two_pow_of_le_two_eq_totient, vonMangoldt_sum, zeta_apply_ne, carmichael_dvd, sum_divisorsAntidiagonal_eq_sum_divisors, cardDistinctFactors_prod, sigma_eq_prod_primeFactors_sum_range_factorization_pow_mul, DirichletCharacter.LSeriesSummable_twist_vonMangoldt, DirichletCharacter.convolution_twist_vonMangoldt, IsMultiplicative.map_one, sum_Ioc_zeta, sum_Ioc_mul_eq_sum_prod_filter, one_one, sum_eq_iff_sum_smul_moebius_eq, sum_eq_iff_sum_mul_moebius_eq_on, mul_apply_one, ppow_apply, sum_eq_iff_sum_mul_moebius_eq, carmichael_finset_lcm, cardDistinctFactors_zero, sigma_zero_apply_prime_pow, zero_apply, add_apply, id_apply, LSeries_vonMangoldt_eq, prodPrimeFactors_apply, sigma_eq_one_iff, ext_iff, sigma_mono, map_zero, coe_zeta_smul_apply, carmichael_dvd_totient, cardDistinctFactors_eq_one_iff, moebius_sq_eq_one_of_squarefree, LSeries_one_mul_Lseries_moebius, vonMangoldt.residueClass_le, toArithmeticFunction_eq_self, EisensteinSeries.q_expansion_bernoulli, LSeries.one_convolution_eq_zeta_convolution, tsum_prod_pow_eq_tsum_sigma, abs_moebius_eq_one_of_squarefree, LSeries_zeta_eq_riemannZeta, coe_inj, IsMultiplicative.eq_iff_eq_on_prime_powers, Polynomial.cyclotomic_eq_prod_X_pow_sub_one_pow_moebius, vonMangoldt_nonneg, LSeriesSummable_moebius_iff, sum_moebius_mul_log_eq, carmichael_finset_prod, coe_mul_zeta_apply, vonMangoldt_apply, pdiv_apply, LSeriesSummable_zeta_iff, cardDistinctFactors_mul, vonMangoldt_apply_one, IsMultiplicative.map_prod, mul_zeta_apply, cardFactors_zero, Chebyshev.psi_eq_sum_Icc, DirichletCharacter.apply_eq_toArithmeticFunction_apply, IsMultiplicative.prodPrimeFactors_one_add_of_squarefree, cardDistinctFactors_one, carmichael_eq_exponent', EisensteinSeries.G2_eq_tsum_cexp, IsMultiplicative.iff_ne_zero, LSeriesHasSum_zeta, tsum_eisSummand_eq_tsum_sigma_mul_cexp_pow, cardDistinctFactors_pos, pow_apply, vonMangoldt_eq_zero_iff, carmichael_eq_exponent, BoundingSieve.nu_pos_of_dvd_prodPrimes, BoundingSieve.nu_pos_of_prime, prod_eq_iff_prod_pow_moebius_eq_on, cardFactors_eq_zero_iff_eq_zero_or_one, BoundingSieve.multSum_eq_main_err, cardFactors_eq_one_iff_prime, mul_apply, sum_Ioc_sigma0_eq_sum_div, vonMangoldt_le_log, DirichletCharacter.convolution_mul_moebius, natCoe_apply, carmichael_mul, carmichael_factorization, LSeriesSummable_vonMangoldt, Nat.moebius_eq, abs_moebius_le_one, cardFactors_mul, sum_eq_iff_sum_smul_moebius_eq_on', zeta_eq_zero, sum_Ioc_mul_eq_sum_sum, Nat.card_pair_lcm_eq, cardFactors_one, zeta_mul_apply, DirichletCharacter.LSeriesSummable_zetaMul, vonMangoldt_apply_prime, carmichael_lcm, IsMultiplicative.map_lcm, intCoe_apply, prod_eq_iff_prod_pow_moebius_eq_of_nonzero, IsMultiplicative.lcm_apply_mul_gcd_apply, IsMultiplicative.map_div_of_coprime, cardFactors_apply_prime, sigma_eq_sum_div, IsMultiplicative.prodPrimeFactors_one_sub_of_squarefree, one_apply, vonMangoldt_apply_pow, IsMultiplicative.map_mul_of_coprime, cardFactors_apply_prime_pow, coe_zeta_mul_apply, sum_eq_iff_sum_smul_moebius_eq_on, carmichael_two_pow_of_ne_two, toFun_eq, cardDistinctFactors_eq_cardFactors_iff_squarefree, moebius_apply_isPrimePow_not_prime, BoundingSieve.prod_primeFactors_nu, abscissaOfAbsConv_moebius, Nat.card_finMulAntidiag_of_squarefree, abs_moebius
instModule πŸ“–CompOpβ€”
instMonoid πŸ“–CompOp
2 mathmath: inv_zetaUnit, coe_zetaUnit
instMul πŸ“–CompOp
30 mathmath: coe_moebius_mul_coe_zeta, LSeriesHasSum_mul, sum_Ioc_mul_zeta_eq_sum, IsMultiplicative.prodPrimeFactors_add_of_squarefree, moebius_mul_coe_zeta, coe_mul, zeta_mul_pow_eq_sigma, zeta_mul_comm, intCoe_mul, coe_zeta_mul_coe_moebius, LSeries_mul', sum_Ioc_mul_eq_sum_prod_filter, mul_apply_one, mul_smul', log_mul_moebius_eq_vonMangoldt, moebius_mul_log_eq_vonMangoldt, coe_mul_zeta_apply, LSeries_mul, mul_zeta_apply, IsMultiplicative.mul, LSeriesSummable_mul, coe_zeta_mul_comm, mul_apply, coe_zeta_mul_moebius, natCoe_mul, vonMangoldt_mul_zeta, sum_Ioc_mul_eq_sum_sum, zeta_mul_apply, zeta_mul_vonMangoldt, coe_zeta_mul_apply
instNeg πŸ“–CompOp
1 mathmath: neg_apply
instSMul πŸ“–CompOp
4 mathmath: smul_apply, one_smul', mul_smul', coe_zeta_smul_apply
instSemiring πŸ“–CompOpβ€”
intCoe πŸ“–CompOpβ€”
natCoe πŸ“–CompOpβ€”
natToArithmeticFunction πŸ“–CompOp
22 mathmath: coe_moebius_mul_coe_zeta, sum_Ioc_mul_zeta_eq_sum, coe_coe, IsMultiplicative.natCast, moebius_mul_coe_zeta, coe_zeta_mul_coe_moebius, natCoe_one, zeta_pmul, coe_zeta_smul_apply, coe_mul_zeta_apply, ppow_zero, pdiv_zeta, natCoe_nat, coe_zeta_mul_comm, coe_zeta_mul_moebius, natCoe_apply, natCoe_mul, vonMangoldt_mul_zeta, pmul_zeta, zeta_mul_vonMangoldt, coe_zetaUnit, coe_zeta_mul_apply
ofInt πŸ“–CompOp
11 mathmath: coe_moebius_mul_coe_zeta, intCoe_one, intCoe_int, coe_coe, intCoe_mul, coe_zeta_mul_coe_moebius, log_mul_moebius_eq_vonMangoldt, moebius_mul_log_eq_vonMangoldt, inv_zetaUnit, IsMultiplicative.intCast, intCoe_apply
one πŸ“–CompOp
12 mathmath: coe_moebius_mul_coe_zeta, intCoe_one, isMultiplicative_one, moebius_mul_coe_zeta, one_smul', one_apply_ne, one_eq_delta, coe_zeta_mul_coe_moebius, natCoe_one, one_one, coe_zeta_mul_moebius, one_apply
zero πŸ“–CompOp
1 mathmath: zero_apply

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instFunLikeNat
add
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
β€”β€”
coe_coe πŸ“–mathematicalβ€”ofInt
natToArithmeticFunction
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
β€”ext
Int.cast_natCast
coe_inj πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
instFunLikeNat
β€”DFunLike.coe_fn_eq
coe_mk πŸ“–mathematicalMulZeroClass.toZero
Nat.instMulZeroClass
DFunLike.coe
ArithmeticFunction
instFunLikeNat
β€”β€”
ext πŸ“–β€”DFunLike.coe
ArithmeticFunction
instFunLikeNat
β€”β€”ZeroHom.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
instFunLikeNat
β€”ext
intCoe_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddGroupWithOne.toAddGroup
instFunLikeNat
ofInt
AddGroupWithOne.toIntCast
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
β€”β€”
intCoe_int πŸ“–mathematicalβ€”ofInt
Ring.toAddGroupWithOne
Int.instRing
β€”ext
intCoe_mul πŸ“–mathematicalβ€”ofInt
Ring.toAddGroupWithOne
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
instMul
Int.instSemiring
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddGroupWithOne.toAddGroup
Ring.toSemiring
β€”ext
Int.cast_sum
Finset.sum_congr
Int.cast_mul
intCoe_one πŸ“–mathematicalβ€”ofInt
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
one
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddGroupWithOne.toAddGroup
β€”ext
Int.cast_ite
Int.cast_one
Int.cast_zero
isMultiplicative_one πŸ“–mathematicalβ€”IsMultiplicative
ArithmeticFunction
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
one
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
β€”IsMultiplicative.iff_ne_zero
one_mul
one_apply_ne
Unique.instSubsingleton
MulZeroClass.zero_mul
map_zero πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
instFunLikeNat
β€”ZeroHom.map_zero'
mul_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instFunLikeNat
instMul
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Nat.divisorsAntidiagonal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
mul_apply_one πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instFunLikeNat
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”Finset.sum_congr
Nat.divisorsAntidiagonal_one
Finset.sum_singleton
mul_smul' πŸ“–mathematicalβ€”ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instSMul
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
instMul
β€”ext
Finset.sum_congr
Finset.sum_smul
SemigroupAction.mul_smul
Finset.sum_sigma'
Finset.smul_sum
Finset.sum_nbij'
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
mul_assoc
Sigma.eta
natCoe_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
instFunLikeNat
natToArithmeticFunction
AddMonoidWithOne.toNatCast
MulZeroClass.toZero
Nat.instMulZeroClass
β€”β€”
natCoe_mul πŸ“–mathematicalβ€”natToArithmeticFunction
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instMul
Nat.instSemiring
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
β€”ext
Nat.cast_sum
Finset.sum_congr
Nat.cast_mul
natCoe_nat πŸ“–mathematicalβ€”natToArithmeticFunction
Nat.instAddMonoidWithOne
β€”ext
Nat.cast_id
natCoe_one πŸ“–mathematicalβ€”natToArithmeticFunction
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
one
Nat.instOne
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddMonoidWithOne.toOne
β€”ext
Nat.cast_ite
Nat.cast_one
Nat.cast_zero
neg_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
NegZeroClass.toZero
instFunLikeNat
instNeg
NegZeroClass.toNeg
β€”β€”
one_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
instFunLikeNat
one
β€”β€”
one_apply_ne πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
instFunLikeNat
one
β€”β€”
one_one πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
instFunLikeNat
one
β€”β€”
one_smul' πŸ“–mathematicalβ€”ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instSMul
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”ext
smul_apply
Finset.sum_congr
Nat.divisorsAntidiagonal_zero
map_zero
one_mul
Finset.sum_subset
one_apply_ne
zero_smul
Finset.sum_singleton
one_smul
smul_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLikeNat
instSMul
Finset.sum
Nat.divisorsAntidiagonal
β€”β€”
toFun_eq πŸ“–mathematicalβ€”ZeroHom.toFun
MulZeroClass.toZero
Nat.instMulZeroClass
DFunLike.coe
ArithmeticFunction
instFunLikeNat
β€”β€”
zero_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
instFunLikeNat
zero
β€”β€”

ArithmeticFunction.IsMultiplicative

Theorems

NameKindAssumesProvesValidatesDepends On
eq_iff_eq_on_prime_powers πŸ“–mathematicalArithmeticFunction.IsMultiplicative
CommMonoidWithZero.toMonoidWithZero
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
ArithmeticFunction.instFunLikeNat
Monoid.toNatPow
Nat.instMonoid
β€”ArithmeticFunction.ext
ArithmeticFunction.map_zero
multiplicative_factorization
Finset.prod_congr
Nat.prime_of_mem_primeFactors
eq_zero_of_squarefree_of_dvd_eq_zero πŸ“–β€”ArithmeticFunction.IsMultiplicative
Squarefree
Nat.instMonoid
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
ArithmeticFunction.instFunLikeNat
β€”β€”map_mul_of_coprime
Nat.coprime_of_squarefree_mul
MulZeroClass.zero_mul
iff_ne_zero πŸ“–mathematicalβ€”ArithmeticFunction.IsMultiplicative
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
ArithmeticFunction.instFunLikeNat
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
MulZeroClass.toMul
β€”eq_or_ne
MulZeroClass.zero_mul
ArithmeticFunction.map_zero
MulZeroClass.mul_zero
intCast πŸ“–mathematicalArithmeticFunction.IsMultiplicative
Semiring.toMonoidWithZero
Int.instSemiring
Ring.toSemiring
ArithmeticFunction.ofInt
Ring.toAddGroupWithOne
β€”map_one
Int.cast_one
Int.cast_mul
lcm_apply_mul_gcd_apply πŸ“–mathematicalArithmeticFunction.IsMultiplicative
CommMonoidWithZero.toMonoidWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
ArithmeticFunction.instFunLikeNat
β€”ArithmeticFunction.map_zero
MulZeroClass.zero_mul
MulZeroClass.mul_zero
pow_zero
multiplicative_factorization
Finsupp.prod_of_support_subset
Nat.factorization_lcm
Finsupp.support_sup
Nat.instCanonicallyOrderedAdd
Finset.instReflSubset
Nat.factorization_gcd
Finsupp.support_inf
Finset.inter_subset_union
Finset.subset_union_left
Finset.subset_union_right
Finset.prod_mul_distrib
Finset.prod_congr
sup_of_le_right
inf_of_le_left
mul_comm
sup_of_le_left
inf_of_le_right
map_div_of_coprime πŸ“–mathematicalArithmeticFunction.IsMultiplicative
GroupWithZero.toMonoidWithZero
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
ArithmeticFunction.instFunLikeNat
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
β€”div_eq_of_eq_mul
map_gcd πŸ“–mathematicalArithmeticFunction.IsMultiplicative
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
ArithmeticFunction.instFunLikeNat
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
MulZeroClass.toMul
β€”lcm_apply_mul_gcd_apply
mul_div_cancel_leftβ‚€
GroupWithZero.toMulDivCancelClass
map_lcm πŸ“–mathematicalArithmeticFunction.IsMultiplicative
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
ArithmeticFunction.instFunLikeNat
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
MulZeroClass.toMul
β€”lcm_apply_mul_gcd_apply
mul_div_cancel_rightβ‚€
GroupWithZero.toMulDivCancelClass
map_mul_of_coprime πŸ“–mathematicalArithmeticFunction.IsMultiplicativeDFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
ArithmeticFunction.instFunLikeNat
MulZeroClass.toMul
β€”β€”
map_one πŸ“–mathematicalArithmeticFunction.IsMultiplicativeDFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
ArithmeticFunction.instFunLikeNat
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
β€”β€”
map_prod πŸ“–mathematicalArithmeticFunction.IsMultiplicative
CommMonoidWithZero.toMonoidWithZero
Set.Pairwise
SetLike.coe
Finset
Finset.instSetLike
Function.onFun
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
ArithmeticFunction.instFunLikeNat
Finset.prod
Nat.instCommMonoid
CommMonoidWithZero.toCommMonoid
β€”Finset.induction_on
map_one
Finset.prod_insert
map_mul_of_coprime
Nat.Coprime.prod_right
Set.pairwise_insert_of_symmetric
Symmetric.comap
Nat.Coprime.symmetric
Finset.coe_insert
Membership.mem.ne_of_notMem
map_prod_of_prime πŸ“–mathematicalArithmeticFunction.IsMultiplicative
CommMonoidWithZero.toMonoidWithZero
Nat.Prime
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
ArithmeticFunction.instFunLikeNat
Finset.prod
Nat.instCommMonoid
CommMonoidWithZero.toCommMonoid
β€”map_prod
Nat.coprime_primes
map_prod_of_subset_primeFactors πŸ“–mathematicalArithmeticFunction.IsMultiplicative
CommMonoidWithZero.toMonoidWithZero
Finset
Finset.instHasSubset
Nat.primeFactors
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
ArithmeticFunction.instFunLikeNat
Finset.prod
Nat.instCommMonoid
CommMonoidWithZero.toCommMonoid
β€”map_prod_of_prime
Nat.prime_of_mem_primeFactors
mul πŸ“–mathematicalArithmeticFunction.IsMultiplicative
Semiring.toMonoidWithZero
CommSemiring.toSemiring
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
ArithmeticFunction.instMul
β€”Finset.sum_congr
Nat.divisorsAntidiagonal_one
Finset.sum_singleton
mul_one
Finset.sum_mul_sum
Finset.sum_product'
Finset.sum_nbij
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
mul_comm
one_mul
Set.image_congr
map_mul_of_coprime
multiplicative_factorization πŸ“–mathematicalArithmeticFunction.IsMultiplicative
CommMonoidWithZero.toMonoidWithZero
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
ArithmeticFunction.instFunLikeNat
Finsupp.prod
Nat.instMulZeroClass
CommMonoidWithZero.toCommMonoid
Nat.factorization
Monoid.toNatPow
Nat.instMonoid
β€”Nat.multiplicative_factorization
natCast πŸ“–mathematicalArithmeticFunction.IsMultiplicative
Nat.instMonoidWithZero
Semiring.toMonoidWithZero
ArithmeticFunction.natToArithmeticFunction
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”map_one
Nat.cast_one
Nat.cast_mul
prod_primeFactors πŸ“–mathematicalArithmeticFunction.IsMultiplicative
CommMonoidWithZero.toMonoidWithZero
Squarefree
Nat.instMonoid
Finset.prod
CommMonoidWithZero.toCommMonoid
Nat.primeFactors
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
ArithmeticFunction.instFunLikeNat
β€”map_prod_of_subset_primeFactors
Finset.Subset.rfl
Nat.prod_primeFactors_of_squarefree

(root)

Definitions

NameCategoryTheorems
instInhabitedArithmeticFunction πŸ“–CompOpβ€”

---

← Back to Index