Documentation Verification Report

Misc

πŸ“ Source: Mathlib/NumberTheory/ArithmeticFunction/Misc.lean

Statistics

MetricCount
DefinitionstermΩ, bigproddvd, cardDistinctFactors, cardFactors, id, termω, pow, prodPrimeFactors, sigma, termσ, evalArithmeticFunctionSigma
11
TheoremsprodPrimeFactors, prodPrimeFactors_add_of_squarefree, cardDistinctFactors_apply, cardDistinctFactors_apply_prime, cardDistinctFactors_apply_prime_pow, cardDistinctFactors_eq_cardFactors_iff_squarefree, cardDistinctFactors_eq_one_iff, cardDistinctFactors_eq_zero, cardDistinctFactors_mul, cardDistinctFactors_one, cardDistinctFactors_pos, cardDistinctFactors_prod, cardDistinctFactors_zero, cardFactors_apply, cardFactors_apply_prime, cardFactors_apply_prime_pow, cardFactors_eq_one_iff_prime, cardFactors_eq_sum_factorization, cardFactors_eq_zero_iff_eq_zero_or_one, cardFactors_mul, cardFactors_multiset_prod, cardFactors_one, cardFactors_pos_iff_one_lt, cardFactors_pow, cardFactors_zero, id_apply, isMultiplicative_id, isMultiplicative_pow, isMultiplicative_sigma, pow_apply, pow_one_eq_id, pow_zero_eq_zeta, prodPrimeFactors_apply, sigma_apply, sigma_apply_prime_pow, sigma_eq_one_iff, sigma_eq_prod_primeFactors_sum_range_factorization_pow_mul, sigma_eq_sum_div, sigma_eq_zero, sigma_mono, sigma_one, sigma_one_apply, sigma_one_apply_prime_pow, sigma_pos, sigma_pos_iff, sigma_zero_apply, sigma_zero_apply_prime_pow, sum_Ioc_mul_eq_sum_prod_filter, sum_Ioc_mul_eq_sum_sum, sum_Ioc_mul_zeta_eq_sum, sum_Ioc_sigma0_eq_sum_div, sum_Ioc_zeta, zeta_mul_pow_eq_sigma, card_divisors_mul, sum_divisors_mul, card_divisors, divisors_card_eq_one_iff, sum_divisors
58
Total69

ArithmeticFunction

Definitions

NameCategoryTheorems
bigproddvd πŸ“–CompOpβ€”
cardDistinctFactors πŸ“–CompOp
13 mathmath: cardDistinctFactors_apply, cardDistinctFactors_apply_prime_pow, cardDistinctFactors_apply_prime, cardDistinctFactors_eq_zero, cardDistinctFactors_prod, cardDistinctFactors_zero, cardDistinctFactors_eq_one_iff, cardDistinctFactors_mul, cardDistinctFactors_one, cardDistinctFactors_pos, Nat.card_pair_lcm_eq, cardDistinctFactors_eq_cardFactors_iff_squarefree, Nat.card_finMulAntidiag_of_squarefree
cardFactors πŸ“–CompOp
14 mathmath: cardFactors_pow, cardFactors_multiset_prod, cardFactors_apply, moebius_apply_of_squarefree, cardFactors_pos_iff_one_lt, cardFactors_eq_sum_factorization, cardFactors_zero, cardFactors_eq_zero_iff_eq_zero_or_one, cardFactors_eq_one_iff_prime, cardFactors_mul, cardFactors_one, cardFactors_apply_prime, cardFactors_apply_prime_pow, cardDistinctFactors_eq_cardFactors_iff_squarefree
id πŸ“–CompOp
3 mathmath: id_apply, pow_one_eq_id, isMultiplicative_id
pow πŸ“–CompOp
5 mathmath: zeta_mul_pow_eq_sigma, pow_zero_eq_zeta, isMultiplicative_pow, pow_one_eq_id, pow_apply
prodPrimeFactors πŸ“–CompOp
3 mathmath: IsMultiplicative.prodPrimeFactors_add_of_squarefree, prodPrimeFactors_apply, IsMultiplicative.prodPrimeFactors
sigma πŸ“–CompOp
25 mathmath: sigma_pos, EisensteinSeries.hasSum_e2Summand_symmetricIcc, sigma_apply, sigma_one_apply_prime_pow, sigma_zero_apply, tsum_pow_div_one_sub_eq_tsum_sigma, sigma_apply_prime_pow, zeta_mul_pow_eq_sigma, sigma_eq_zero, sigma_one_apply, EisensteinSeries.hasSum_e2Summand_symmetricIco, EisensteinSeries.q_expansion_riemannZeta, sigma_pos_iff, sigma_one, sigma_eq_prod_primeFactors_sum_range_factorization_pow_mul, sigma_zero_apply_prime_pow, sigma_eq_one_iff, sigma_mono, isMultiplicative_sigma, EisensteinSeries.q_expansion_bernoulli, tsum_prod_pow_eq_tsum_sigma, EisensteinSeries.G2_eq_tsum_cexp, tsum_eisSummand_eq_tsum_sigma_mul_cexp_pow, sum_Ioc_sigma0_eq_sum_div, sigma_eq_sum_div

Theorems

NameKindAssumesProvesValidatesDepends On
cardDistinctFactors_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
cardDistinctFactors
List.dedup
Nat.primeFactorsList
β€”β€”
cardDistinctFactors_apply_prime πŸ“–mathematicalNat.PrimeDFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
cardDistinctFactors
β€”pow_one
cardDistinctFactors_apply_prime_pow
one_ne_zero
cardDistinctFactors_apply_prime_pow πŸ“–mathematicalNat.PrimeDFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
cardDistinctFactors
Monoid.toNatPow
Nat.instMonoid
β€”cardDistinctFactors_eq_one_iff
IsPrimePow.pow
Nat.Prime.isPrimePow
cardDistinctFactors_eq_cardFactors_iff_squarefree πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
cardDistinctFactors
cardFactors
Squarefree
Nat.instMonoid
β€”Nat.squarefree_iff_nodup_primeFactorsList
cardDistinctFactors_apply
List.dedup_sublist
List.nodup_dedup
List.Nodup.dedup
cardDistinctFactors_eq_one_iff πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
cardDistinctFactors
IsPrimePow
Nat.instCommMonoidWithZero
β€”cardDistinctFactors_apply
isPrimePow_iff_card_primeFactors_eq_one
Nat.toFinset_factors
List.card_toFinset
cardDistinctFactors_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
cardDistinctFactors
β€”β€”
cardDistinctFactors_mul πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
cardDistinctFactors
β€”List.Perm.dedup
Nat.perm_primeFactorsList_mul_of_coprime
List.Disjoint.dedup_append
Nat.coprime_primeFactorsList_disjoint
cardDistinctFactors_one πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
cardDistinctFactors
β€”Nat.primeFactorsList_one
cardDistinctFactors_pos πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
cardDistinctFactors
β€”Nat.instCanonicallyOrderedAdd
cardDistinctFactors_prod πŸ“–mathematicalSet.Pairwise
SetLike.coe
Finset
Finset.instSetLike
Function.onFun
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
cardDistinctFactors
Finset.prod
Nat.instCommMonoid
Finset.sum
Nat.instAddCommMonoid
β€”Finset.cons_induction_on
cardDistinctFactors_one
Finset.prod_cons
Finset.sum_cons
cardDistinctFactors_mul
Nat.Coprime.prod_right
Finset.coe_cons
cardDistinctFactors_zero πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
cardDistinctFactors
β€”map_zero
cardFactors_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
cardFactors
Nat.primeFactorsList
β€”β€”
cardFactors_apply_prime πŸ“–mathematicalNat.PrimeDFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
cardFactors
β€”cardFactors_eq_one_iff_prime
cardFactors_apply_prime_pow πŸ“–mathematicalNat.PrimeDFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
cardFactors
Monoid.toNatPow
Nat.instMonoid
β€”cardFactors_pow
cardFactors_apply_prime
mul_one
cardFactors_eq_one_iff_prime πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
cardFactors
Nat.Prime
β€”map_zero
Nat.prod_primeFactorsList
Nat.prime_of_mem_primeFactorsList
Nat.primeFactorsList_prime
cardFactors_eq_sum_factorization πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
cardFactors
Finsupp.sum
Nat.instAddCommMonoid
Nat.factorization
β€”Finset.sum_congr
Nat.primeFactorsList_count_eq
cardFactors_eq_zero_iff_eq_zero_or_one πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
cardFactors
β€”cardFactors_apply
Nat.primeFactorsList_eq_nil
cardFactors_mul πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
cardFactors
β€”cardFactors_apply
Multiset.coe_card
Unique.instSubsingleton
Nat.instUniqueFactorizationMonoid
Nat.factors_eq
UniqueFactorizationMonoid.normalizedFactors_mul
Multiset.card_add
cardFactors_multiset_prod πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
cardFactors
Multiset.prod
Nat.instCommMonoid
Multiset.sum
Nat.instAddCommMonoid
Multiset.map
β€”Multiset.induction_on
cardFactors_one
Multiset.prod_cons
cardFactors_mul
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
Nat.instNontrivial
Multiset.map_cons
Multiset.sum_cons
cardFactors_one πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
cardFactors
β€”Nat.primeFactorsList_one
cardFactors_pos_iff_one_lt πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
cardFactors
β€”cardFactors_apply
Nat.primeFactorsList_ne_nil
cardFactors_pow πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
cardFactors
Monoid.toNatPow
Nat.instMonoid
β€”pow_zero
cardFactors_one
map_zero
MulZeroClass.mul_zero
zero_pow
MulZeroClass.zero_mul
pow_succ
cardFactors_mul
pow_ne_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
cardFactors_zero πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
cardFactors
β€”map_zero
id_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
id
β€”β€”
isMultiplicative_id πŸ“–mathematicalβ€”IsMultiplicative
Nat.instMonoidWithZero
id
β€”β€”
isMultiplicative_pow πŸ“–mathematicalβ€”IsMultiplicative
Nat.instMonoidWithZero
pow
β€”IsMultiplicative.ppow
isMultiplicative_id
isMultiplicative_sigma πŸ“–mathematicalβ€”IsMultiplicative
Nat.instMonoidWithZero
sigma
β€”zeta_mul_pow_eq_sigma
IsMultiplicative.mul
isMultiplicative_zeta
isMultiplicative_pow
pow_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
pow
Monoid.toNatPow
Nat.instMonoid
β€”ppow_zero
natCoe_nat
pow_zero
ppow_apply
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instNoMaxOrder
Nat.instCanonicallyOrderedAdd
pow_one_eq_id πŸ“–mathematicalβ€”pow
id
β€”ext
pow_apply
pow_one
pow_zero_eq_zeta πŸ“–mathematicalβ€”pow
zeta
β€”ext
pow_apply
pow_zero
prodPrimeFactors_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
instFunLikeNat
prodPrimeFactors
Finset.prod
CommMonoidWithZero.toCommMonoid
Nat.primeFactors
β€”β€”
sigma_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
sigma
Finset.sum
Nat.instAddCommMonoid
Nat.divisors
Monoid.toNatPow
Nat.instMonoid
β€”β€”
sigma_apply_prime_pow πŸ“–mathematicalNat.PrimeDFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
sigma
Monoid.toNatPow
Nat.instMonoid
Finset.sum
Nat.instAddCommMonoid
Finset.range
β€”Nat.pow_right_injective
Nat.Prime.two_le
Finset.sum_congr
Nat.divisors_prime_pow
Finset.sum_map
pow_mul
sigma_eq_one_iff πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
sigma
β€”map_zero
sigma_pos
sigma_mono
sigma_one
sigma_eq_prod_primeFactors_sum_range_factorization_pow_mul πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
sigma
Finset.prod
Nat.instCommMonoid
Nat.primeFactors
Finset.sum
Nat.instAddCommMonoid
Finset.range
Finsupp
Finsupp.instFunLike
Nat.factorization
Monoid.toNatPow
Nat.instMonoid
β€”IsMultiplicative.multiplicative_factorization
isMultiplicative_sigma
Finset.prod_congr
Nat.support_factorization
sigma_apply_prime_pow
Nat.prime_of_mem_primeFactors
sigma_eq_sum_div πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
sigma
Finset.sum
Nat.instAddCommMonoid
Nat.divisors
Monoid.toNatPow
Nat.instMonoid
β€”sigma_apply
Nat.sum_div_divisors
sigma_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
sigma
β€”eq_or_ne
map_zero
Unique.instSubsingleton
dvd_refl
sigma_mono πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
sigma
β€”Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
pow_le_pow_right'
Nat.instMulLeftMono
Nat.pos_of_mem_divisors
sigma_one πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
sigma
β€”Finset.sum_congr
Nat.divisors_one
Finset.sum_singleton
one_pow
sigma_one_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
sigma
Finset.sum
Nat.instAddCommMonoid
Nat.divisors
β€”Finset.sum_congr
pow_one
sigma_one_apply_prime_pow πŸ“–mathematicalNat.PrimeDFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
sigma
Monoid.toNatPow
Nat.instMonoid
Finset.sum
Nat.instAddCommMonoid
Finset.range
β€”sigma_apply_prime_pow
Finset.sum_congr
mul_one
sigma_pos πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
sigma
β€”sigma_pos_iff
pos_iff_ne_zero
Nat.instCanonicallyOrderedAdd
sigma_pos_iff πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
sigma
β€”Nat.instCanonicallyOrderedAdd
sigma_zero_apply πŸ“–mathematicalβ€”DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
sigma
Finset.card
Nat.divisors
β€”Finset.sum_congr
pow_zero
Finset.sum_const
mul_one
sigma_zero_apply_prime_pow πŸ“–mathematicalNat.PrimeDFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
sigma
Monoid.toNatPow
Nat.instMonoid
β€”sigma_apply_prime_pow
Finset.sum_congr
MulZeroClass.mul_zero
pow_zero
Finset.sum_const
Finset.card_range
mul_one
sum_Ioc_mul_eq_sum_prod_filter πŸ“–mathematicalβ€”Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finset.Ioc
Nat.instPreorder
Nat.instLocallyFiniteOrder
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
instFunLikeNat
instMul
Finset.filter
SProd.sprod
Finset
Finset.instSProd
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”Finset.sum_congr
Nat.divisorsAntidiagonal_eq_prod_filter_of_le
LT.lt.ne'
Finset.sum_filter
Finset.sum_comm
Finset.sum_ite_eq
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
sum_Ioc_mul_eq_sum_sum πŸ“–mathematicalβ€”Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finset.Ioc
Nat.instPreorder
Nat.instLocallyFiniteOrder
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
instFunLikeNat
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”sum_Ioc_mul_eq_sum_prod_filter
Finset.sum_filter
Finset.sum_product
Finset.sum_congr
Finset.sum_ite
Finset.filter.congr_simp
Finset.sum_const_zero
add_zero
Finset.mul_sum
Finset.ext
le_imp_le_of_le_of_le
le_refl
mul_le_mul_right
Nat.instMulLeftMono
sum_Ioc_mul_zeta_eq_sum πŸ“–mathematicalβ€”Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finset.Ioc
Nat.instPreorder
Nat.instLocallyFiniteOrder
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
instFunLikeNat
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instMul
natToArithmeticFunction
zeta
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toNatCast
β€”sum_Ioc_mul_eq_sum_sum
Finset.sum_congr
sum_Ioc_zeta
sum_Ioc_sigma0_eq_sum_div πŸ“–mathematicalβ€”Finset.sum
Nat.instAddCommMonoid
Finset.Ioc
Nat.instPreorder
Nat.instLocallyFiniteOrder
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
sigma
β€”zeta_mul_pow_eq_sigma
pow_zero_eq_zeta
Finset.sum_congr
ite_mul
MulZeroClass.zero_mul
one_mul
sum_Ioc_mul_zeta_eq_sum
sum_Ioc_zeta πŸ“–mathematicalβ€”Finset.sum
Nat.instAddCommMonoid
Finset.Ioc
Nat.instPreorder
Nat.instLocallyFiniteOrder
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instFunLikeNat
zeta
β€”Finset.sum_congr
Finset.sum_ite
Finset.sum_const_zero
Finset.sum_const
mul_one
zero_add
Finset.ext
Nat.card_Ioc
tsub_zero
Nat.instOrderedSub
zeta_mul_pow_eq_sigma πŸ“–mathematicalβ€”ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
instMul
Nat.instSemiring
zeta
pow
sigma
β€”ext
sigma.eq_1
zeta_mul_apply
Finset.sum_congr
pow_apply
pow_zero

ArithmeticFunction.IsMultiplicative

Theorems

NameKindAssumesProvesValidatesDepends On
prodPrimeFactors πŸ“–mathematicalβ€”ArithmeticFunction.IsMultiplicative
CommMonoidWithZero.toMonoidWithZero
ArithmeticFunction.prodPrimeFactors
β€”iff_ne_zero
ArithmeticFunction.prodPrimeFactors_apply
Finset.prod_congr
Nat.primeFactors_one
mul_ne_zero
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
Nat.primeFactors_mul
Finset.prod_union
Nat.Coprime.disjoint_primeFactors
prodPrimeFactors_add_of_squarefree πŸ“–mathematicalArithmeticFunction.IsMultiplicative
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Squarefree
Nat.instMonoid
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
CommSemiring.toCommMonoidWithZero
ArithmeticFunction.instFunLikeNat
ArithmeticFunction.prodPrimeFactors
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
ArithmeticFunction.add
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
ArithmeticFunction.instMul
β€”ArithmeticFunction.prodPrimeFactors_apply
Squarefree.ne_zero
Nat.instNontrivial
Finset.prod_congr
ArithmeticFunction.add_apply
Finset.prod_add
ArithmeticFunction.mul_apply
Nat.sum_divisorsAntidiagonal
Nat.divisors_filter_squarefree_of_squarefree
Unique.instSubsingleton
Nat.instUniqueFactorizationMonoid
Nat.sum_divisors_filter_squarefree
Nat.factors_eq
Finset.sum_congr
Finset.prod_val
Nat.prod_primeFactors_sdiff_of_squarefree
Finset.mem_powerset
map_prod_of_subset_primeFactors
Finset.sdiff_subset

ArithmeticFunction.Omega

Definitions

NameCategoryTheorems
termΞ© πŸ“–CompOpβ€”

ArithmeticFunction.omega

Definitions

NameCategoryTheorems
termΟ‰ πŸ“–CompOpβ€”

ArithmeticFunction.sigma

Definitions

NameCategoryTheorems
termΟƒ πŸ“–CompOpβ€”

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalArithmeticFunctionSigma πŸ“–CompOpβ€”

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
card_divisors πŸ“–mathematicalβ€”Finset.card
divisors
Finset.prod
instCommMonoid
primeFactors
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”ArithmeticFunction.sigma_zero_apply
ArithmeticFunction.IsMultiplicative.multiplicative_factorization
ArithmeticFunction.isMultiplicative_sigma
Finset.prod_congr
support_factorization
ArithmeticFunction.sigma_zero_apply_prime_pow
prime_of_mem_primeFactors
divisors_card_eq_one_iff πŸ“–mathematicalβ€”Finset.card
divisors
β€”eq_or_ne
divisors_zero
Finset.card_le_one
Eq.le
one_mem_divisors
mem_divisors_self
divisors_one
Finset.card_singleton
sum_divisors πŸ“–mathematicalβ€”Finset.sum
instAddCommMonoid
divisors
Finset.prod
instCommMonoid
primeFactors
Finset.range
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
Monoid.toNatPow
instMonoid
β€”ArithmeticFunction.sigma_one_apply
ArithmeticFunction.IsMultiplicative.multiplicative_factorization
ArithmeticFunction.isMultiplicative_sigma
Finset.prod_congr
support_factorization
ArithmeticFunction.sigma_one_apply_prime_pow
prime_of_mem_primeFactors

Nat.Coprime

Theorems

NameKindAssumesProvesValidatesDepends On
card_divisors_mul πŸ“–mathematicalβ€”Finset.card
Nat.divisors
β€”ArithmeticFunction.IsMultiplicative.map_mul_of_coprime
ArithmeticFunction.isMultiplicative_sigma
sum_divisors_mul πŸ“–mathematicalβ€”Finset.sum
Nat.instAddCommMonoid
Nat.divisors
β€”ArithmeticFunction.IsMultiplicative.map_mul_of_coprime
ArithmeticFunction.isMultiplicative_sigma

---

← Back to Index