Documentation Verification Report

Bernoulli

πŸ“ Source: Mathlib/NumberTheory/Bernoulli.lean

Statistics

MetricCount
Definitionsbernoulli, bernoulli', bernoulli'PowerSeries, bernoulliPowerSeries
4
Theoremsbernoulli'PowerSeries_mul_exp_sub_one, bernoulli'_def, bernoulli'_def', bernoulli'_eq_bernoulli, bernoulli'_eq_zero_of_odd, bernoulli'_four, bernoulli'_odd_eq_zero, bernoulli'_one, bernoulli'_spec, bernoulli'_spec', bernoulli'_three, bernoulli'_two, bernoulli'_zero, bernoulliPowerSeries_mul_exp_sub_one, bernoulli_eq_bernoulli'_of_ne_one, bernoulli_eq_zero_of_odd, bernoulli_one, bernoulli_spec', bernoulli_two, bernoulli_zero, sum_Ico_pow, sum_bernoulli, sum_bernoulli', sum_range_pow
24
Total28

(root)

Definitions

NameCategoryTheorems
bernoulli πŸ“–CompOp
20 mathmath: Polynomial.bernoulli_succ_eval, Polynomial.bernoulli_eval_zero, Polynomial.sum_range_pow_eq_bernoulli_sub, bernoulli_spec', bernoulli_zero, bernoulli_eq_zero_of_odd, bernoulliFun_eval_zero, Polynomial.bernoulli_def, bernoulli'_eq_bernoulli, EisensteinSeries.q_expansion_bernoulli, bernoulli_two, sum_range_pow, bernoulli_eq_bernoulli'_of_ne_one, Polynomial.coeff_bernoulli, sum_bernoulli, riemannZeta_neg_nat_eq_bernoulli, riemannZeta_two_mul_nat, hasSum_zeta_nat, bernoulli_one, bernoulliFun_eval_half
bernoulli' πŸ“–CompOp
17 mathmath: Polynomial.bernoulli_eval_one, bernoulli'_two, bernoulli'_spec, bernoulli'_spec', sum_Ico_pow, bernoulli'_three, sum_bernoulli', bernoulli'_eq_bernoulli, bernoulli'_four, bernoulli'_odd_eq_zero, bernoulli'_one, bernoulli_eq_bernoulli'_of_ne_one, bernoulli'_def, riemannZeta_neg_nat_eq_bernoulli', bernoulli'_eq_zero_of_odd, bernoulli'_def', bernoulli'_zero
bernoulli'PowerSeries πŸ“–CompOp
1 mathmath: bernoulli'PowerSeries_mul_exp_sub_one
bernoulliPowerSeries πŸ“–CompOp
1 mathmath: bernoulliPowerSeries_mul_exp_sub_one

Theorems

NameKindAssumesProvesValidatesDepends On
bernoulli'PowerSeries_mul_exp_sub_one πŸ“–mathematicalβ€”PowerSeries
MvPowerSeries.instMul
CommSemiring.toSemiring
CommRing.toCommSemiring
bernoulli'PowerSeries
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
PowerSeries.instAddGroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
PowerSeries.exp
MvPowerSeries.instOne
PowerSeries.X
β€”PowerSeries.ext
PowerSeries.coeff_zero_eq_constantCoeff
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_sub
RingHomClass.toAddMonoidHomClass
PowerSeries.constantCoeff_exp
sub_self
MulZeroClass.mul_zero
PowerSeries.constantCoeff_X
mul_one
bernoulli'PowerSeries.eq_1
PowerSeries.coeff_mul
mul_comm
Finset.Nat.sum_antidiagonal_succ'
eq_inv_of_mul_eq_one_left
Finset.sum_mul
Finset.sum_congr
Nat.factorial_mul_factorial_dvd_factorial_add
mul_inv_rev
Nat.add_choose
Nat.cast_div_charZero
Rat.instCharZero
Nat.cast_mul
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
ne_of_gt
Nat.cast_pos'
Rat.instAddLeftMono
Rat.instZeroLEOneClass
NeZero.charZero_one
Nat.factorial_pos
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
Nat.cast_nonneg'
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Rat.instIsStrictOrderedRing
Rat.nontrivial
Mathlib.Meta.NormNum.isNat_ofNat
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
bernoulli'_spec'
Nat.cast_add
Nat.cast_one
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
PowerSeries.coeff_exp
one_div
PowerSeries.coeff_one
sub_zero
zero_add
PowerSeries.coeff_succ_mul_X
map_sum
bernoulli'_def πŸ“–mathematicalβ€”bernoulli'
Finset.sum
Rat.addCommMonoid
Finset.range
Nat.choose
β€”bernoulli'_def'
Fin.sum_univ_eq_sum_range
bernoulli'_def' πŸ“–mathematicalβ€”bernoulli'
Finset.sum
Rat.addCommMonoid
Finset.univ
Fin.fintype
Nat.choose
β€”bernoulli'.eq_1
bernoulli'_eq_bernoulli πŸ“–mathematicalβ€”bernoulli'
bernoulli
β€”mul_comm
Even.neg_pow
Distrib.rightDistribClass
Nat.instAtLeastTwoHAddOfNat
one_pow
one_mul
bernoulli'_eq_zero_of_odd πŸ“–mathematicalOdd
Nat.instSemiring
bernoulli'β€”map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
eq_ratCast
map_natCast
bernoulli'PowerSeries_mul_exp_sub_one
sub_mul
mul_sub
neg_sub
mul_neg
neg_eq_iff_eq_neg
mul_one
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_sub
RingHomClass.toAddMonoidHomClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
mul_assoc
mul_comm
PowerSeries.exp_mul_exp_neg_eq_one
one_mul
PowerSeries.evalNegHom_X
neg_mul
mul_eq_mul_right_iff
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
PowerSeries.instIsDomain
Rat.isDomain
eq_zero_of_neg_eq
Rat.instIsOrderedAddMonoid
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
PowerSeries.coeff_rescale
Odd.neg_one_pow
sub_neg_eq_add
IsStrictOrderedRing.noZeroDivisors
Rat.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Rat.instCharZero
PowerSeries.coeff_X
neg_zero
PowerSeries.coeff_exp
zero_add
Nat.cast_one
div_self
Rat.cast_one
PowerSeries.coeff_one
sub_zero
map_zero
AddMonoidHomClass.toZeroHomClass
NeZero.charZero_one
bernoulli'_four πŸ“–mathematicalβ€”bernoulli'β€”bernoulli'_def
Finset.sum_congr
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.isNat_ofNat
Finset.sum_range_succ
Finset.sum_singleton
Nat.choose_zero_right
Nat.cast_one
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.IsNat.to_isInt
one_div
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Rat.instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
bernoulli'_zero
mul_one
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Nat.instAtLeastTwoHAddOfNat
Nat.choose_one_right
div_self
Mathlib.Meta.NormNum.isNat_eq_false
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
bernoulli'_one
one_mul
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.IsNNRat.to_isNat
bernoulli'_two
Nat.choose_succ_self_right
bernoulli'_three
MulZeroClass.mul_zero
add_zero
Mathlib.Meta.NormNum.IsRat.neg_to_eq
Mathlib.Meta.NormNum.isRat_sub
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.isRat_div
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.isInt_neg
bernoulli'_odd_eq_zero πŸ“–mathematicalOdd
Nat.instSemiring
bernoulli'β€”bernoulli'_eq_zero_of_odd
bernoulli'_one πŸ“–mathematicalβ€”bernoulli'β€”bernoulli'_def
Finset.sum_congr
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.isNat_ofNat
Finset.sum_singleton
Nat.choose_succ_self_right
Mathlib.Meta.NormNum.isNat_add
Nat.cast_one
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.IsNat.to_isInt
one_div
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Rat.instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
bernoulli'_zero
mul_one
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_sub
Mathlib.Meta.NormNum.IsNNRat.to_isRat
bernoulli'_spec πŸ“–mathematicalβ€”Finset.sum
Rat.addCommMonoid
Finset.range
Nat.choose
bernoulli'
β€”Finset.sum_range_succ_comm
bernoulli'_def
tsub_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
Nat.choose_zero_right
sub_self
zero_add
div_one
Nat.cast_one
one_mul
sub_add
Finset.sum_sub_distrib
sub_eq_zero
sub_sub_cancel_left
neg_eq_zero
Finset.sum_eq_zero
Nat.choose_symm
le_of_lt
Finset.mem_range
bernoulli'_spec' πŸ“–mathematicalβ€”Finset.sum
Rat.addCommMonoid
Finset.HasAntidiagonal.antidiagonal
Nat.instAddMonoid
Finset.Nat.instHasAntidiagonal
Nat.choose
bernoulli'
β€”Finset.sum_congr
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
Finset.mem_range_succ_iff
Nat.cast_sub
bernoulli'_spec
bernoulli'_three πŸ“–mathematicalβ€”bernoulli'β€”bernoulli'_def
Finset.sum_congr
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.isNat_ofNat
Finset.sum_range_succ
Finset.sum_singleton
Nat.choose_zero_right
Nat.cast_one
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.IsNat.to_isInt
one_div
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Rat.instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
bernoulli'_zero
mul_one
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Nat.instAtLeastTwoHAddOfNat
Nat.choose_one_right
div_self
Mathlib.Meta.NormNum.isNat_eq_false
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
bernoulli'_one
one_mul
Mathlib.Meta.NormNum.isNNRat_add
Nat.choose_succ_self_right
bernoulli'_two
Mathlib.Meta.NormNum.IsNNRat.to_isNat
sub_self
bernoulli'_two πŸ“–mathematicalβ€”bernoulli'β€”bernoulli'_def
Finset.sum_congr
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.isNat_ofNat
Finset.sum_range_succ
Finset.sum_singleton
Nat.choose_zero_right
Nat.cast_one
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.IsNat.to_isInt
one_div
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Rat.instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
bernoulli'_zero
mul_one
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Nat.instAtLeastTwoHAddOfNat
Nat.choose_succ_self_right
div_self
Mathlib.Meta.NormNum.isNat_eq_false
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
bernoulli'_one
one_mul
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_sub
Mathlib.Meta.NormNum.IsNNRat.to_isRat
bernoulli'_zero πŸ“–mathematicalβ€”bernoulli'β€”bernoulli'_def
Finset.sum_congr
CharP.cast_eq_zero
CharP.ofCharZero
Rat.instCharZero
zero_sub
sub_zero
bernoulliPowerSeries_mul_exp_sub_one πŸ“–mathematicalβ€”PowerSeries
MvPowerSeries.instMul
CommSemiring.toSemiring
CommRing.toCommSemiring
bernoulliPowerSeries
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
PowerSeries.instAddGroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
PowerSeries.exp
MvPowerSeries.instOne
PowerSeries.X
β€”PowerSeries.ext
PowerSeries.coeff_zero_eq_constantCoeff
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_sub
RingHomClass.toAddMonoidHomClass
PowerSeries.constantCoeff_exp
sub_self
MulZeroClass.mul_zero
PowerSeries.coeff_zero_X
PowerSeries.coeff_mul
Finset.sum_congr
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
PowerSeries.coeff_exp
one_div
PowerSeries.coeff_one
Finset.Nat.sum_antidiagonal_succ'
Nat.cast_mul
Nat.cast_succ
Unique.instSubsingleton
sub_zero
PowerSeries.coeff_X
zero_add
bernoulli_one
CharP.cast_eq_zero
CharP.ofCharZero
Rat.instCharZero
Nat.cast_one
mul_one
div_one
inv_one
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
Finset.antidiagonal_zero
Nat.instCanonicallyOrderedAdd
mul_inv_rev
Finset.sum_singleton
bernoulli_zero
div_self
NeZero.charZero_one
Nat.cast_zero
Nat.factorial_ne_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
zero_div
bernoulli_spec'
Finset.sum_div
eq_div_of_mul_eq
Finset.HasAntidiagonal.mem_antidiagonal
Nat.add_choose
Nat.cast_div_charZero
Nat.factorial_mul_factorial_dvd_factorial_add
mul_assoc
mul_comm
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
ne_of_gt
Nat.cast_pos'
Rat.instAddLeftMono
Rat.instZeroLEOneClass
Nat.factorial_pos
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
Nat.cast_nonneg'
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Rat.instIsStrictOrderedRing
Rat.nontrivial
Mathlib.Meta.NormNum.isNat_ofNat
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
bernoulli_eq_bernoulli'_of_ne_one πŸ“–mathematicalβ€”bernoulli
bernoulli'
β€”Ne.lt_or_gt
bernoulli_zero
bernoulli'_zero
Nat.even_or_odd
bernoulli.eq_1
Even.neg_one_pow
one_mul
bernoulli'_eq_zero_of_odd
bernoulli_eq_zero_of_odd
bernoulli_eq_zero_of_odd πŸ“–mathematicalOdd
Nat.instSemiring
bernoulliβ€”bernoulli.eq_1
bernoulli'_eq_zero_of_odd
MulZeroClass.mul_zero
bernoulli_one πŸ“–mathematicalβ€”bernoulliβ€”Mathlib.Meta.NormNum.IsInt.neg_to_eq
Mathlib.Meta.NormNum.isInt_pow
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.intPow_negOfNat_bit1
Mathlib.Meta.NormNum.natPow_zero
bernoulli'_one
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Rat.instCharZero
neg_mul
Mathlib.Meta.NormNum.IsRat.neg_to_eq
Mathlib.Meta.NormNum.isRat_neg
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.isRat_div
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
bernoulli_spec' πŸ“–mathematicalβ€”Finset.sum
Rat.addCommMonoid
Finset.HasAntidiagonal.antidiagonal
Nat.instAddMonoid
Finset.Nat.instHasAntidiagonal
Nat.choose
bernoulli
β€”Finset.sum_congr
Finset.antidiagonal_zero
Nat.instCanonicallyOrderedAdd
Finset.sum_singleton
add_zero
Nat.choose_self
Nat.cast_one
CharP.cast_eq_zero
CharP.ofCharZero
Rat.instCharZero
zero_add
div_self
NeZero.charZero_one
bernoulli_zero
mul_one
add_comm
Nat.cast_zero
Nat.choose_succ_self_right
bernoulli'_spec'
Finset.sum_eq_add_sum_diff_singleton
add_eq_of_eq_sub'
Finset.mem_singleton
Finset.mem_sdiff
bernoulli_eq_bernoulli'_of_ne_one
Finset.antidiagonal_congr
Nat.cast_add
bernoulli_one
zero_sub
bernoulli'_one
one_div
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
neg_div
mul_neg
neg_neg
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Meta.NormNum.isNat_eq_false
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.IsNat.to_isInt
eq_sub_of_add_eq'
bernoulli_two πŸ“–mathematicalβ€”bernoulliβ€”Even.neg_pow
Nat.instAtLeastTwoHAddOfNat
one_pow
bernoulli'_two
one_div
one_mul
bernoulli_zero πŸ“–mathematicalβ€”bernoulliβ€”pow_zero
bernoulli'_zero
mul_one
sum_Ico_pow πŸ“–mathematicalβ€”Finset.sum
Rat.addCommMonoid
Finset.Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
Finset.range
bernoulli'
Nat.choose
β€”Nat.cast_succ
Finset.sum_congr
pow_zero
Finset.sum_const
Nat.card_Ico
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
nsmul_eq_mul
mul_one
zero_add
Nat.cast_one
div_one
Finset.sum_singleton
bernoulli'_zero
Nat.choose_succ_self_right
tsub_zero
pow_one
one_mul
Nat.cast_zero
Rat.instCharZero
mul_div_right_comm
mul_div_cancel_rightβ‚€
EuclideanDomain.toMulDivCancelClass
bernoulli_one
Nat.choose_one_right
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_add
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
Mathlib.Tactic.Ring.add_pf_zero_add
bernoulli_eq_bernoulli'_of_ne_one
Finset.sum_Ico_eq_sub
CharP.cast_eq_zero
CharP.ofCharZero
zero_pow
sub_zero
Finset.sum_range_succ
sum_range_pow
Nat.cast_add
Finset.sum_range_succ'
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_gt
one_div
bernoulli_zero
Nat.choose_zero_right
bernoulli'_one
AddRightCancelSemigroup.toIsRightCancelAdd
sum_bernoulli πŸ“–mathematicalβ€”Finset.sum
Rat.addCommMonoid
Finset.range
Nat.choose
bernoulli
β€”Finset.sum_congr
zero_add
Finset.sum_singleton
Nat.choose_succ_self_right
Nat.cast_one
bernoulli_zero
mul_one
sum_bernoulli'
bernoulli_eq_bernoulli'_of_ne_one
Nat.cast_succ
Finset.sum_range_succ'
Nat.choose_zero_right
bernoulli'_zero
Nat.choose_one_right
bernoulli'_one
one_div
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Rat.instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.neg_mul
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_add
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
bernoulli_one
Nat.cast_zero
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsRat.to_isInt
Mathlib.Tactic.Ring.add_overlap_pf_zero
sum_bernoulli' πŸ“–mathematicalβ€”Finset.sum
Rat.addCommMonoid
Finset.range
Nat.choose
bernoulli'
β€”CharP.cast_eq_zero
CharP.ofCharZero
Rat.instCharZero
Finset.mul_sum
Finset.sum_congr
Nat.cast_one
Nat.cast_zero
Nat.cast_sub
LT.lt.le
Finset.mem_range
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
mul_comm
tsub_add_eq_add_tsub
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.choose_mul_succ_eq
Finset.sum_range_succ
bernoulli'_def
Int.cast_one
Int.cast_natCast
Nat.choose_succ_self_right
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
sum_range_pow πŸ“–mathematicalβ€”Finset.sum
Rat.addCommMonoid
Finset.range
bernoulli
Nat.choose
β€”Nat.cast_zero
Rat.instCharZero
Nat.factorial_ne_zero
PowerSeries.ext
PowerSeries.coeff_mul
Finset.sum_congr
Finset.Nat.sum_antidiagonal_eq_sum_range_succ
PowerSeries.exp_pow_eq_rescale_exp
Nat.instNoMaxOrder
Nat.choose_eq_factorial_div_factorial
LT.lt.le
div_eq_iff
mul_assoc
mul_comm
div_mul_eq_mul_div
PowerSeries.coeff_exp
one_div
map_invβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_natCast
mul_one_div
div_div
tsub_add_eq_add_tsub
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.cast_div
Nat.factorial_mul_factorial_dvd_factorial
Nat.cast_mul
IsStrictOrderedRing.noZeroDivisors
Rat.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Nat.cast_one
inv_one
PowerSeries.coeff_one
sub_zero
map_zero
AddMonoidHomClass.toZeroHomClass
NeZero.charZero_one
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
PowerSeries.constantCoeff_exp
one_pow
map_one
MonoidHomClass.toOneHomClass
PowerSeries.sub_const_eq_X_mul_shift
mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
PowerSeries.instIsDomain
Rat.isDomain
PowerSeries.exp_pow_sum
geom_sum_mul
bernoulliPowerSeries_mul_exp_sub_one
bernoulliPowerSeries.eq_1
mul_right_comm
mul_eq_mul_right_iff
IsCancelMulZero.toIsRightCancelMulZero
div_eq_mul_inv
Finset.sum_mul
PowerSeries.ext_iff
Nat.cast_add
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
ne_of_gt
Nat.cast_pos'
Rat.instAddLeftMono
Rat.instZeroLEOneClass
Nat.factorial_pos
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
Nat.cast_nonneg'
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Rat.nontrivial
Mathlib.Meta.NormNum.isNat_ofNat
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial

---

← Back to Index