Documentation Verification Report

Bertrand

📁 Source: Mathlib/NumberTheory/Bertrand.lean

Statistics

MetricCount
Definitions0
Theoremsreal_main_inequality, bertrand, exists_prime_lt_and_le_two_mul, exists_prime_lt_and_le_two_mul_eventually, exists_prime_lt_and_le_two_mul_succ, bertrand_main_inequality, centralBinom_factorization_small, centralBinom_le_of_no_bertrand_prime
8
Total8

Bertrand

Theorems

NameKindAssumesProvesValidatesDepends On
real_main_inequality 📖mathematicalReal
Real.instLE
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instMul
Real.instPow
Real.sqrt
DivInvMonoid.toDiv
Real.instDivInvMonoid
Nat.instAtLeastTwoHAddOfNat
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
mul_pos
Real.rpow_pos_of_pos
two_pos
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
four_pos
zero_lt_two'
Real.log_div
LT.lt.ne'
Real.log_mul
Real.log_rpow
zero_lt_four
mul_div_right_comm
mul_div
mul_comm
lt_of_lt_of_le
Mathlib.Meta.NormNum.isNat_lt_true
Real.instIsOrderedRing
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Meta.NormNum.instAtLeastTwo
div_le_one
div_div_eq_mul_div
Real.rpow_sub
mul_div_left_comm
mul_one_sub
Mathlib.Meta.NormNum.isNNRat_eq_true
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_sub
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
mul_one_div
Real.log_nonpos_iff
LT.lt.le
ConcaveOn.sub
ConcaveOn.add
ConcaveOn.subset
StrictConcaveOn.concaveOn
strictConcaveOn_log_Ioi
Set.Ioi_subset_Ioi
Mathlib.Meta.NormNum.isRat_le_true
Mathlib.Meta.NormNum.isNNRat_ofScientific_of_true
Mathlib.Meta.NormNum.isNNRat_ratCast
Mathlib.Meta.NormNum.isRat_mkRat
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.IsNat.raw_refl
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.natPow_one
Mathlib.Meta.NormNum.isNat_intCast
Mathlib.Meta.NormNum.isNat_intOfNat
Rat.instCharZero
convex_Ioi
Real.instIsOrderedCancelAddMonoid
IsStrictOrderedModule.toPosSMulStrictMono
IsStrictOrderedRing.toIsStrictOrderedModule
Algebra.to_smulCommClass
Set.ext
mul_lt_mul_iff_right₀
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
ConcaveOn.comp_linearMap
strictConcaveOn_sqrt_mul_log_Ioi
ConvexOn.smul
IsOrderedModule.toPosSMulMono
IsStrictOrderedModule.toIsOrderedModule
div_nonneg
Real.log_nonneg
Mathlib.Meta.NormNum.isNat_le_true
convexOn_id
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Real.sqrt_eq_iff_mul_self_eq_of_pos
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_mul
Real.log_nonneg_iff
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
one_le_div
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.trans
Mathlib.Meta.NormNum.IsNatPowT.bit1
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Meta.NormNum.IsNat.rpow_eq_pow
Nat.cast_ofNat
Real.rpow_natCast
pow_mul
pow_add
Real.rpow_two
Real.rpow_mul
Real.rpow_le_rpow_of_exponent_le
Mathlib.Meta.NormNum.isNat_add
LE.le.trans
ConcaveOn.right_le_of_le_left''
LT.lt.trans_le
LT.lt.trans

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
bertrand 📖mathematicalPrimeexists_prime_lt_and_le_two_mul
exists_prime_lt_and_le_two_mul 📖mathematicalPrimelt_or_ge
exists_prime_lt_and_le_two_mul_eventually
LE.le.trans_lt
Mathlib.Meta.NormNum.isNat_lt_true
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
instCharZero
Mathlib.Meta.NormNum.isNat_ofNat
exists_prime_lt_and_le_two_mul_succ
Mathlib.Meta.NormNum.isNat_prime_2
Mathlib.Meta.NormNum.isNat_minFac_4
Mathlib.Meta.NormNum.IsNat.raw_refl
Mathlib.Meta.NormNum.minFacHelper_2
Mathlib.Meta.NormNum.not_prime_mul_of_ble
Mathlib.Meta.NormNum.minFacHelper_3
Mathlib.Meta.NormNum.minFacHelper_0
Mathlib.Meta.NormNum.isNat_le_true
Mathlib.Meta.NormNum.isNat_mul
prime_two
exists_prime_lt_and_le_two_mul_eventually 📖mathematicalPrimefour_pow_lt_mul_centralBinom
le_trans
Mathlib.Meta.NormNum.isNat_le_true
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
centralBinom_le_of_no_bertrand_prime
lt_of_lt_of_le
Mathlib.Meta.NormNum.isNat_lt_true
instCharZero
le_imp_le_of_le_of_le
mul_le_mul_right
instMulLeftMono
le_refl
mul_assoc
bertrand_main_inequality
exists_prime_lt_and_le_two_mul_succ 📖Prime

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
bertrand_main_inequality 📖mathematicalMonoid.toNatPow
Nat.instMonoid
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
Nat.instAtLeastTwoHAddOfNat
Nat.cast_mul
Nat.cast_pow
trans
instIsTransLe
mul_le_mul
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
mul_le_mul_of_nonneg_left
Real.rpow_le_rpow_of_exponent_le
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
lt_of_lt_of_le
Nat.cast_one
Real.nat_sqrt_le_real_sqrt
le_of_lt
Nat.cast_pos'
NeZero.charZero_one
Mathlib.Meta.NormNum.isNat_le_true
Mathlib.Meta.NormNum.instAtLeastTwo
LE.le.trans
Nat.cast_div_le
Real.instIsStrictOrderedRing
le_refl
Real.rpow_pos_of_pos
Real.instNontrivial
IsStrictOrderedRing.toPosMulStrictMono
Bertrand.real_main_inequality
centralBinom_factorization_small 📖mathematicalNat.centralBinom
Finset.prod
Nat.instCommMonoid
Finset.range
Monoid.toNatPow
Nat.instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instFunLike
Nat.factorization
Finset.prod_subset
Mathlib.Tactic.GCongr.rel_imp_rel
Finset.instIsTransSubset
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
subset_refl
Finset.instReflSubset
LE.le.not_gt
Finset.mem_range
Nat.factorization_eq_zero_of_not_prime
Nat.factorization_centralBinom_of_two_mul_self_lt_three_mul
Nat.instAtLeastTwoHAddOfNat
mul_comm
three_pos
Nat.instZeroLEOneClass
not_le
Nat.prod_pow_factorization_centralBinom
centralBinom_le_of_no_bertrand_prime 📖mathematicalNat.centralBinom
Monoid.toNatPow
Nat.instMonoid
LE.le.trans_lt
mul_pos
Nat.instAtLeastTwoHAddOfNat
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
zero_lt_two'
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Finset.prod_filter_of_ne
Mathlib.Tactic.Contrapose.contrapose₂
Nat.factorization_eq_zero_of_not_prime
pow_zero
centralBinom_factorization_small
Finset.prod_filter_mul_prod_filter_not
mul_le_mul'
Nat.instMulLeftMono
covariant_swap_mul_of_covariant_mul
LE.le.trans
Finset.prod_le_prod'
Nat.pow_factorization_choose_le
two_pos
Nat.card_Icc
Finset.prod_const
pow_right_mono₀
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Finset.card_le_card
Finset.mem_filter
Finset.mem_Icc
LT.lt.le
Nat.Prime.one_lt
Eq.le
le_trans
Nat.factorization_choose_le_one
Nat.sqrt_lt'
not_le
pow_one
Finset.prod_le_prod_of_subset_of_one_le'
Finset.filter_subset
primorial_le_4_pow

---

← Back to Index