📁 Source: Mathlib/NumberTheory/Bertrand.lean
real_main_inequality
bertrand
exists_prime_lt_and_le_two_mul
exists_prime_lt_and_le_two_mul_eventually
exists_prime_lt_and_le_two_mul_succ
bertrand_main_inequality
centralBinom_factorization_small
centralBinom_le_of_no_bertrand_prime
Real
Real.instLE
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instMul
Real.instPow
Real.sqrt
DivInvMonoid.toDiv
Real.instDivInvMonoid
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
mul_pos
Real.rpow_pos_of_pos
two_pos
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
four_pos
zero_lt_two'
Real.log_div
LT.lt.ne'
Real.log_mul
Real.log_rpow
zero_lt_four
mul_div_right_comm
mul_div
mul_comm
lt_of_lt_of_le
Mathlib.Meta.NormNum.isNat_lt_true
Real.instIsOrderedRing
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Meta.NormNum.instAtLeastTwo
div_le_one
div_div_eq_mul_div
Real.rpow_sub
mul_div_left_comm
mul_one_sub
Mathlib.Meta.NormNum.isNNRat_eq_true
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_sub
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
mul_one_div
Real.log_nonpos_iff
LT.lt.le
ConcaveOn.sub
ConcaveOn.add
ConcaveOn.subset
StrictConcaveOn.concaveOn
strictConcaveOn_log_Ioi
Set.Ioi_subset_Ioi
Mathlib.Meta.NormNum.isRat_le_true
Mathlib.Meta.NormNum.isNNRat_ofScientific_of_true
Mathlib.Meta.NormNum.isNNRat_ratCast
Mathlib.Meta.NormNum.isRat_mkRat
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.IsNat.raw_refl
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.natPow_one
Mathlib.Meta.NormNum.isNat_intCast
Mathlib.Meta.NormNum.isNat_intOfNat
Rat.instCharZero
convex_Ioi
Real.instIsOrderedCancelAddMonoid
IsStrictOrderedModule.toPosSMulStrictMono
IsStrictOrderedRing.toIsStrictOrderedModule
Algebra.to_smulCommClass
Set.ext
mul_lt_mul_iff_right₀
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
ConcaveOn.comp_linearMap
strictConcaveOn_sqrt_mul_log_Ioi
ConvexOn.smul
IsOrderedModule.toPosSMulMono
IsStrictOrderedModule.toIsOrderedModule
div_nonneg
Real.log_nonneg
Mathlib.Meta.NormNum.isNat_le_true
convexOn_id
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Real.sqrt_eq_iff_mul_self_eq_of_pos
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_mul
Real.log_nonneg_iff
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
one_le_div
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.trans
Mathlib.Meta.NormNum.IsNatPowT.bit1
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Meta.NormNum.IsNat.rpow_eq_pow
Nat.cast_ofNat
Real.rpow_natCast
pow_mul
pow_add
Real.rpow_two
Real.rpow_mul
Real.rpow_le_rpow_of_exponent_le
Mathlib.Meta.NormNum.isNat_add
LE.le.trans
ConcaveOn.right_le_of_le_left''
LT.lt.trans_le
LT.lt.trans
Prime
lt_or_ge
LE.le.trans_lt
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
instCharZero
Mathlib.Meta.NormNum.isNat_prime_2
Mathlib.Meta.NormNum.isNat_minFac_4
Mathlib.Meta.NormNum.minFacHelper_2
Mathlib.Meta.NormNum.not_prime_mul_of_ble
Mathlib.Meta.NormNum.minFacHelper_3
Mathlib.Meta.NormNum.minFacHelper_0
prime_two
four_pow_lt_mul_centralBinom
le_trans
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
le_imp_le_of_le_of_le
mul_le_mul_right
instMulLeftMono
le_refl
mul_assoc
Monoid.toNatPow
Nat.instMonoid
Nat.cast_le
Nat.cast_mul
Nat.cast_pow
trans
instIsTransLe
mul_le_mul
IsOrderedRing.toPosMulMono
IsOrderedRing.toMulPosMono
mul_le_mul_of_nonneg_left
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Real.nat_sqrt_le_real_sqrt
le_of_lt
Nat.cast_pos'
Nat.cast_div_le
Bertrand.real_main_inequality
Nat.centralBinom
Finset.prod
Nat.instCommMonoid
Finset.range
DFunLike.coe
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instFunLike
Nat.factorization
Finset.prod_subset
Mathlib.Tactic.GCongr.rel_imp_rel
Finset.instIsTransSubset
add_le_add_left
covariant_swap_add_of_covariant_add
Nat.instIsOrderedAddMonoid
subset_refl
Finset.instReflSubset
LE.le.not_gt
Finset.mem_range
Nat.factorization_eq_zero_of_not_prime
Nat.factorization_centralBinom_of_two_mul_self_lt_three_mul
three_pos
Nat.instZeroLEOneClass
not_le
Nat.prod_pow_factorization_centralBinom
Finset.prod_filter_of_ne
Mathlib.Tactic.Contrapose.contrapose₂
pow_zero
Finset.prod_filter_mul_prod_filter_not
mul_le_mul'
Nat.instMulLeftMono
covariant_swap_mul_of_covariant_mul
Finset.prod_le_prod'
Nat.pow_factorization_choose_le
Nat.card_Icc
Finset.prod_const
pow_right_mono₀
Finset.card_le_card
Finset.mem_filter
Finset.mem_Icc
Nat.Prime.one_lt
Eq.le
Nat.factorization_choose_le_one
Nat.sqrt_lt'
pow_one
Finset.prod_le_prod_of_subset_of_one_le'
Finset.filter_subset
primorial_le_4_pow
---
← Back to Index