Documentation Verification Report

AdmissibleCardPowDegree

πŸ“ Source: Mathlib/NumberTheory/ClassNumber/AdmissibleCardPowDegree.lean

Statistics

MetricCount
DefinitionscardPowDegreeIsAdmissible
1
TheoremscardPowDegree_anti_archimedean, exists_approx_polynomial, exists_approx_polynomial_aux, exists_eq_polynomial, exists_partition_polynomial, exists_partition_polynomial_aux
6
Total7

Polynomial

Definitions

NameCategoryTheorems
cardPowDegreeIsAdmissible πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
cardPowDegree_anti_archimedean πŸ“–β€”DFunLike.coe
AbsoluteValue
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
semiring
Int.instSemiring
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
AbsoluteValue.funLike
cardPowDegree
instSub
DivisionRing.toRing
Field.toDivisionRing
β€”β€”lt_of_le_of_lt
AbsoluteValue.nonneg
sub_self
map_zero
AbsoluteValue.zeroHomClass
cardPowDegree_nonzero
sub_ne_zero
Nat.cast_one
Int.instAddLeftMono
Int.instZeroLEOneClass
Int.instCharZero
LT.lt.le
Fintype.one_lt_card
IsLocalRing.toNontrivial
Field.instIsLocalRing
pow_le_pow_rightβ‚€
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
natDegree_le_iff_degree_le
le_max_iff
degree_eq_natDegree
sub_add_sub_cancel
degree_add_le
max_lt
exists_approx_polynomial πŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.instIntCast
DFunLike.coe
AbsoluteValue
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
semiring
Int.instSemiring
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
AbsoluteValue.funLike
cardPowDegree
instSub
DivisionRing.toRing
Field.toDivisionRing
instMod
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
Real.instAddGroup
β€”Real.instIsStrictOrderedRing
Algebra.smul_def
eq_intCast
RingHom.instRingHomClass
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Int.cast_pos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
AbsoluteValue.pos
Fintype.one_lt_card
IsLocalRing.toNontrivial
Field.instIsLocalRing
Nat.cast_one
Nat.cast_zero
exists_eq_polynomial
le_rfl
EuclideanDomain.mod_lt
sub_self
map_zero
AbsoluteValue.zeroHomClass
Int.cast_zero
exists_approx_polynomial_aux
sub_eq_zero
lt_of_lt_of_le
Nat.cast_lt
WithBot.coe_lt_coe
degree_eq_natDegree
sub_neg_eq_add
neg_div
Nat.cast_sub
LT.lt.le
le_imp_le_of_le_of_le
sub_le_sub_left
covariant_swap_add_of_covariant_add
Nat.le_ceil
le_refl
Real.log_lt_log_iff
cardPowDegree_nonzero
Int.cast_pow
Int.cast_natCast
Real.log_mul
pow_ne_zero
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
LT.lt.ne'
Real.rpow_natCast
Real.log_rpow
lt_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.log_pos
add_div
mul_div_cancel_rightβ‚€
EuclideanDomain.toMulDivCancelClass
exists_approx_polynomial_aux πŸ“–mathematicalMonoid.toNatPow
Nat.instMonoid
Fintype.card
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
Ring.toSemiring
Polynomial
instSub
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
natDegree
β€”not_lt_of_ge
bot_le
degree_zero
Fintype.card_pi
Finset.prod_const
Fintype.card_fin
Nat.instNoMaxOrder
lt_of_le_of_lt
Fintype.exists_ne_map_eq_of_card_lt
degree_lt_iff_coeff_zero
coeff_eq_zero_of_degree_lt
lt_of_lt_of_le
degree_sub_le
max_lt
coeff_sub
sub_eq_zero
WithBot.coe_lt_coe
degree_eq_natDegree
tsub_le_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
tsub_lt_iff_tsub_lt
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
tsub_tsub_cancel_of_le
LT.lt.le
exists_eq_polynomial πŸ“–β€”Monoid.toNatPow
Nat.instMonoid
Fintype.card
natDegree
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
β€”β€”Fintype.card_pi
Finset.prod_const
Fintype.card_fin
Nat.instNoMaxOrder
lt_of_le_of_lt
Fintype.exists_ne_map_eq_of_card_lt
ext
coeff_eq_zero_of_degree_lt
lt_of_lt_of_le
coe_lt_degree
exists_partition_polynomial πŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.instIntCast
DFunLike.coe
AbsoluteValue
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
semiring
Int.instSemiring
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
AbsoluteValue.funLike
cardPowDegree
instSub
DivisionRing.toRing
Field.toDivisionRing
instMod
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
Real.instAddGroup
β€”Real.instIsStrictOrderedRing
exists_partition_polynomial_aux
exists_partition_polynomial_aux πŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.instIntCast
DFunLike.coe
AbsoluteValue
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
semiring
Int.instSemiring
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
AbsoluteValue.funLike
cardPowDegree
instSub
DivisionRing.toRing
Field.toDivisionRing
instMod
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
Real.instAddGroup
β€”Algebra.smul_def
eq_intCast
RingHom.instRingHomClass
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Int.cast_pos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
AbsoluteValue.pos
cardPowDegree_anti_archimedean
Mathlib.Tactic.Push.not_forall_eq
exists_approx_polynomial
AbsoluteValue.map_sub
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
NormMulClass.toNoZeroDivisors
Int.instNormMulClass
not_le
Fin.cons_zero
Fin.cons_succ
trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
eq_isEquiv
sub_self
AbsoluteValue.map_zero
Int.cast_zero
zsmul_eq_mul

---

← Back to Index