Documentation Verification Report

Finite

πŸ“ Source: Mathlib/NumberTheory/ClassNumber/Finite.lean

Statistics

MetricCount
DefinitionscardM, distinctElems, finsetApprox, fintypeOfAdmissibleOfAlgebraic, fintypeOfAdmissibleOfFinite, mkMMem, normBound
7
Theoremsexists_mem_finsetApprox, exists_mem_finset_approx', exists_min, exists_mk0_eq_mk0, zero_notMem, mem_finsetApprox, mkMMem_surjective, ne_bot_of_prod_finsetApprox_mem, normBound_pos, norm_le, norm_lt, prod_finsetApprox_ne_zero
12
Total19

ClassGroup

Definitions

NameCategoryTheorems
cardM πŸ“–CompOp
1 mathmath: mem_finsetApprox
distinctElems πŸ“–CompOp
1 mathmath: mem_finsetApprox
finsetApprox πŸ“–CompOp
6 mathmath: mkMMem_surjective, exists_mk0_eq_mk0, finsetApprox.zero_notMem, mem_finsetApprox, exists_mem_finset_approx', exists_mem_finsetApprox
fintypeOfAdmissibleOfAlgebraic πŸ“–CompOpβ€”
fintypeOfAdmissibleOfFinite πŸ“–CompOpβ€”
mkMMem πŸ“–CompOp
1 mathmath: mkMMem_surjective
normBound πŸ“–CompOp
3 mathmath: normBound_pos, norm_lt, norm_le

Theorems

NameKindAssumesProvesValidatesDepends On
exists_mem_finsetApprox πŸ“–mathematicalβ€”Finset
Finset.instMembership
finsetApprox
DFunLike.coe
AbsoluteValue
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Int.instSemiring
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
AbsoluteValue.funLike
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
CommRing.toRing
MonoidHom.instFunLike
Algebra.norm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Algebra.toSMul
RingHom
RingHom.instFunLike
algebraMap
β€”Fintype.card_pos_iff
Module.Basis.index_nonempty
IsDomain.toNontrivial
Real.rpow_pos_of_pos
Int.cast_pos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
normBound_pos
AbsoluteValue.nonneg
Algebra.smul_def
eq_intCast
RingHom.instRingHomClass
Real.mul_rpow
Int.cast_nonneg
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_neg
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.without_one_mul
CancelDenoms.sub_subst
Real.rpow_mul
Int.cast_zero
div_mul_cancelβ‚€
Real.rpow_neg_one
mul_left_comm
mul_inv_cancelβ‚€
mul_one
Real.rpow_natCast
le_refl
RingHomInvPair.ids
EuclideanDomain.div_add_mod
Module.Basis.sum_repr
Finset.smul_sum
Finset.sum_congr
SemigroupAction.mul_smul
add_smul
AbsoluteValue.IsAdmissible.exists_approx
mem_finsetApprox
sub_smul
smul_sub
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Algebra.norm_algebraMap_of_basis
AbsoluteValue.map_pow
Int.instIsDomain
EuclideanDomain.toNontrivial
Int.cast_lt
LT.lt.trans_le
norm_lt
lt_of_le_of_lt
le_of_eq
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
map_sub
map_smul
SemilinearMapClass.toMulActionSemiHomClass
Finset.sum_apply'
Finset.sum_sub_distrib
Module.Basis.repr_self_apply
mul_boole
Finset.sum_ite_eq'
exists_mem_finset_approx' πŸ“–mathematicalβ€”Finset
Finset.instMembership
finsetApprox
DFunLike.coe
AbsoluteValue
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Int.instSemiring
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
AbsoluteValue.funLike
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
CommRing.toRing
MonoidHom.instFunLike
Algebra.norm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Algebra.toSMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Algebra.IsAlgebraic.exists_smul_eq_mul
IsDomain.to_noZeroDivisors
exists_mem_finsetApprox
lt_of_mul_lt_mul_left
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Int.instIsStrictOrderedRing
lt_of_le_of_lt
le_of_eq
AbsoluteValue.map_mul
map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
Algebra.smul_def
smul_sub
sub_mul
SMulCommClass.smul_comm
smulCommClass_self
mul_comm
Algebra.smul_mul_assoc
mul_lt_mul
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toMulPosStrictMono
le_rfl
AbsoluteValue.pos
Algebra.norm_ne_zero_iff_of_basis
Finite.of_fintype
EuclideanDomain.instIsDomain
AbsoluteValue.nonneg
exists_min πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Submonoid.instSetLike
nonZeroDivisors
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Int.exists_least_of_bdd
AbsoluteValue.nonneg
Submodule.ne_bot_iff
nonZeroDivisors.coe_ne_zero
Ideal.instNontrivial
IsDomain.toNontrivial
Mathlib.Tactic.Contrapose.contrapose₁
exists_mk0_eq_mk0 πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
ClassGroup
MulOneClass.toMulOne
Submonoid.toMulOneClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroupClassGroup
MonoidHom.instFunLike
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom
EuclideanDomain.toCommRing
RingHom.instFunLike
algebraMap
Finset.prod
CommRing.toCommMonoid
finsetApprox
β€”prod_finsetApprox_ne_zero
exists_min
IsScalarTower.right
Ideal.dvd_iff_le
IsScalarTower.left
Ideal.mul_le
Ideal.mem_span_singleton
exists_mem_finset_approx'
dvd_of_mul_left_dvd
sub_eq_zero
Ideal.sub_mem
Ideal.mul_mem_left
Algebra.smul_def
mul_dvd_mul_right
dvd_trans
map_dvd
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
Multiset.dvd_prod
Multiset.mem_map
mem_nonZeroDivisors_iff_ne_zero
Ideal.instNoZeroDivisors
IsDomain.to_noZeroDivisors
Ideal.instNontrivial
IsDomain.toNontrivial
Ideal.span_singleton_eq_bot
Ideal.mul_bot
Ideal.zero_eq_bot
SetLike.mem_coe
Set.singleton_subset_iff
Ideal.span_le
mul_dvd_mul_iff_left
IsCancelMulZero.toIsLeftCancelMulZero
Ideal.isCancelMulZero
mul_comm
Ideal.mul_mono
le_rfl
mem_finsetApprox πŸ“–mathematicalβ€”Finset
Finset.instMembership
finsetApprox
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
EuclideanDomain.toCommRing
DFunLike.coe
Function.Embedding
cardM
Function.instFunLikeEmbedding
distinctElems
β€”sub_self
sub_eq_zero
Function.Embedding.injective
Finset.mem_univ
mkMMem_surjective πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
DFunLike.coe
RingHom
EuclideanDomain.toCommRing
RingHom.instFunLike
algebraMap
Finset.prod
CommRing.toCommMonoid
finsetApprox
ClassGroup
mkMMem
β€”exists_mk0_eq_mk0
ne_bot_of_prod_finsetApprox_mem πŸ“–β€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
DFunLike.coe
RingHom
EuclideanDomain.toCommRing
RingHom.instFunLike
algebraMap
Finset.prod
CommRing.toCommMonoid
finsetApprox
β€”β€”Submodule.ne_bot_iff
prod_finsetApprox_ne_zero
normBound_pos πŸ“–mathematicalβ€”normBoundβ€”Module.Basis.index_nonempty
IsDomain.toNontrivial
Module.Basis.ne_zero
EuclideanDomain.toNontrivial
injective_iff_map_eq_zero
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Algebra.leftMulMatrix_injective
Matrix.ext
Algebra.smul_def
eq_natCast
RingHom.instRingHomClass
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Int.instIsStrictOrderedRing
Nat.factorial_pos
pow_pos
Int.instZeroLEOneClass
Fintype.card_pos_iff
lt_of_lt_of_le
AbsoluteValue.pos
Finset.le_max'
Finset.mem_image
Finset.mem_univ
norm_le πŸ“–mathematicalDFunLike.coe
AbsoluteValue
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Int.instSemiring
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
AbsoluteValue.funLike
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
LinearEquiv
RingHom.id
RingHomInvPair.ids
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instAddCommMonoid
Algebra.toModule
Finsupp.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.repr
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Ring.toSemiring
CommRing.toRing
MonoidHom.instFunLike
Algebra.norm
normBound
Monoid.toNatPow
Int.instMonoid
Fintype.card
β€”RingHomInvPair.ids
Module.Basis.sum_repr
smulCommClass_self
IsScalarTower.left
Algebra.norm_apply
Finite.of_fintype
LinearMap.det_toMatrix
Matrix.det.congr_simp
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Finset.sum_congr
map_smul
SemilinearMapClass.toMulActionSemiHomClass
NonUnitalAlgHomClass.instLinearMapClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
smul_mul_assoc
IsScalarTower.right
Finset.card_univ
mul_comm
Matrix.det_sum_smul_le
EuclideanDomain.toNontrivial
Int.instIsStrictOrderedRing
Finset.le_max'
Finset.mem_image
Finset.mem_univ
norm_lt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DFunLike.coe
AbsoluteValue
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Int.instSemiring
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
AbsoluteValue.funLike
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
LinearEquiv
RingHom.id
RingHomInvPair.ids
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instAddCommMonoid
Algebra.toModule
Finsupp.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.repr
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Ring.toSemiring
CommRing.toRing
MonoidHom.instFunLike
Algebra.norm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
normBound
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Fintype.card
β€”RingHomInvPair.ids
Module.Basis.index_nonempty
IsDomain.toNontrivial
Finset.mem_image
Finset.mem_univ
Finset.le_max'
Finset.Nonempty.image
Finset.Nonempty.of_image
Finset.max'_image
Int.cast_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Finset.max'_lt_iff
le_trans
AbsoluteValue.nonneg
LE.le.trans_lt
norm_le
Int.cast_mul
Int.cast_pow
mul_lt_mul'
IsStrictOrderedRing.toPosMulStrictMono
IsOrderedRing.toMulPosMono
le_rfl
pow_lt_pow_leftβ‚€
Int.cast_nonneg
Fintype.card_ne_zero
pow_nonneg
IsOrderedRing.toPosMulMono
Int.cast_pos
normBound_pos
prod_finsetApprox_ne_zero πŸ“–β€”β€”β€”β€”injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
Module.Basis.algebraMap_injective
EuclideanDomain.instIsDomain
IsDomain.toNontrivial
EuclideanDomain.toNontrivial
IsDomain.to_noZeroDivisors
finsetApprox.zero_notMem

ClassGroup.finsetApprox

Theorems

NameKindAssumesProvesValidatesDepends On
zero_notMem πŸ“–mathematicalβ€”Finset
Finset.instMembership
ClassGroup.finsetApprox
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
β€”Finset.notMem_erase

---

← Back to Index