Documentation Verification Report

Basic

πŸ“ Source: Mathlib/NumberTheory/Cyclotomic/Basic.lean

Statistics

MetricCount
DefinitionsCyclotomicField, algebra, algebraBase, instField, instInhabited, CyclotomicRing, algebraBase, instAlgebraCyclotomicField, instCommRing, instInhabited, IsCyclotomicExtension, algEquiv
12
TheoremsisCyclotomicExtension_adjoin_of_exists_isPrimitiveRoot, instCharZero, instIsCyclotomicExtensionSingletonNatSetOfCharZero, instIsCyclotomicExtensionSingletonNatSetOfNat, instNumberField, isCyclotomicExtension, adjoin_algebra_injective, algebraBase_injective, eq_adjoin_primitive_root, instIsDomain, instIsFractionRingCyclotomicFieldOfIsDomainOfNeZeroCast, instIsScalarTowerCyclotomicField, instIsTorsionFreeCyclotomicField, instIsTorsionFreeOfIsDomainOfIsFractionRing, isCyclotomicExtension, isCyclotomicExtension_adjoin_of_exists_isPrimitiveRoot, isCyclotomicExtension_eq, isCyclotomicExtension_lcm_sup, isCyclotomicExtension_le_of_dvd, isCyclotomicExtension_singleton_iff_eq_adjoin, adjoin_primitive_root_eq_top, adjoin_roots, adjoin_roots_cyclotomic_eq_adjoin_nth_roots, adjoin_roots_cyclotomic_eq_adjoin_root_cyclotomic, algEquiv_eq_of_apply_eq, eq, eq_self_sdiff_zero, equiv, exists_isPrimitiveRoot, finite, finiteDimensional, finite_of_singleton, iff_adjoin_eq_top, iff_singleton, iff_union_of_dvd, iff_union_singleton_one, instSubsingleton, integral, isAbelianGalois, isCyclotomicExtension_zero_iff, isGalois, isMulCommutative, isSeparable, isSplittingField_X_pow_sub_one, lcm_sup, le_of_dvd, mem_of_pow_eq_one, neZero, neZero', neZero_of_mem, neZero_of_mem', nonempty_algEquiv_adjoin_of_exists_isPrimitiveRoot, nonempty_algEquiv_adjoin_of_isSepClosed, numberField, of_union_of_dvd, singleton_one, singleton_one_of_algebraMap_bijective, singleton_one_of_bot_eq_top, singleton_zero_of_bot_eq_top, splits_X_pow_sub_one, splits_cyclotomic, splitting_field_cyclotomic, subsingleton_iff, trans, union_left, union_of_isPrimitiveRoot, union_right, adjoin_isCyclotomicExtension, intermediateField_adjoin_isCyclotomicExtension, isCyclotomicExtension, isCyclotomicExtension, instIsScalarTowerCyclotomicField, instIsTorsionFreeCyclotomicFieldOfIsDomainOfIsFractionRing, isCyclotomicExtension_iff, isCyclotomicExtension_iff_eq_adjoin, isCyclotomicExtension_singleton_iff_eq_adjoin
76
Total88

Algebra

Theorems

NameKindAssumesProvesValidatesDepends On
isCyclotomicExtension_adjoin_of_exists_isPrimitiveRoot πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
IsCyclotomicExtension
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
adjoin
setOf
Set
Set.instMembership
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Subalgebra.toCommRing
Subalgebra.algebra
β€”subset_adjoin
Subtype.val_injective
adjoin_induction
Subalgebra.algebraMap_mem
Subalgebra.add_mem
Subalgebra.mul_mem

CyclotomicField

Definitions

NameCategoryTheorems
algebra πŸ“–CompOp
3 mathmath: instIsCyclotomicExtensionSingletonNatSetOfCharZero, isCyclotomicExtension, instIsCyclotomicExtensionSingletonNatSetOfNat
algebraBase πŸ“–CompOp
7 mathmath: instIsTorsionFreeCyclotomicFieldOfIsDomainOfIsFractionRing, IsCyclotomicExtension.Rat.cyclotomicRing_isIntegralClosure_of_prime_pow, IsCyclotomicExtension.Rat.cyclotomicRing_isIntegralClosure, CyclotomicRing.instIsScalarTowerCyclotomicField, instIsScalarTowerCyclotomicField, IsCyclotomicExtension.Rat.cyclotomicRing_isIntegralClosure_of_prime, CyclotomicRing.eq_adjoin_primitive_root
instField πŸ“–CompOp
15 mathmath: instIsTorsionFreeCyclotomicFieldOfIsDomainOfIsFractionRing, CyclotomicRing.instIsFractionRingCyclotomicFieldOfIsDomainOfNeZeroCast, instNumberField, IsCyclotomicExtension.Rat.cyclotomicRing_isIntegralClosure_of_prime_pow, IsCyclotomicExtension.Rat.cyclotomicRing_isIntegralClosure, CyclotomicRing.instIsScalarTowerCyclotomicField, AddChar.PrimitiveAddChar.prim, instIsCyclotomicExtensionSingletonNatSetOfCharZero, CyclotomicRing.adjoin_algebra_injective, instIsScalarTowerCyclotomicField, IsCyclotomicExtension.Rat.cyclotomicRing_isIntegralClosure_of_prime, CyclotomicRing.instIsTorsionFreeCyclotomicField, isCyclotomicExtension, instIsCyclotomicExtensionSingletonNatSetOfNat, instCharZero
instInhabited πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instCharZero πŸ“–mathematicalβ€”CharZero
CyclotomicField
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
β€”charZero_of_injective_algebraMap
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
instIsCyclotomicExtensionSingletonNatSetOfCharZero πŸ“–mathematicalβ€”IsCyclotomicExtension
Set
Set.instSingletonSet
CyclotomicField
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
algebra
β€”instIsCyclotomicExtensionSingletonNatSetOfNat
isCyclotomicExtension
NeZero.charZero
instIsCyclotomicExtensionSingletonNatSetOfNat πŸ“–mathematicalβ€”IsCyclotomicExtension
Set
Set.instSingletonSet
CyclotomicField
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
algebra
β€”Polynomial.isSplittingField_C
RingHomInvPair.ids
LinearEquiv.finrank_eq
Module.finrank_self
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
pow_zero
Algebra.adjoin_empty
Subalgebra.bot_eq_top_iff_finrank_eq_one
Module.Free.of_divisionRing
instNumberField πŸ“–mathematicalβ€”NumberField
CyclotomicField
instField
β€”IsCyclotomicExtension.numberField
Finite.of_fintype
instIsCyclotomicExtensionSingletonNatSetOfCharZero
NumberField.to_charZero
isCyclotomicExtension πŸ“–mathematicalβ€”IsCyclotomicExtension
Set
Set.instSingletonSet
CyclotomicField
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
algebra
β€”NeZero.nat_of_injective
RingHom.instRingHomClass
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
LT.lt.ne'
Polynomial.degree_cyclotomic_pos
NeZero.pos
Nat.instCanonicallyOrderedAdd
Polynomial.Splits.exists_eval_eq_zero
Polynomial.SplittingField.splits
Polynomial.degree_map
Polynomial.isRoot_cyclotomic_iff
instIsDomain
Polynomial.map_cyclotomic
Polynomial.IsRoot.def
Polynomial.eval_map
Algebra.eq_top_iff
Polynomial.SplittingField.adjoin_rootSet
IsCyclotomicExtension.adjoin_roots_cyclotomic_eq_adjoin_nth_roots

CyclotomicRing

Definitions

NameCategoryTheorems
algebraBase πŸ“–CompOp
4 mathmath: instIsTorsionFreeOfIsDomainOfIsFractionRing, instIsScalarTowerCyclotomicField, algebraBase_injective, isCyclotomicExtension
instAlgebraCyclotomicField πŸ“–CompOp
7 mathmath: instIsFractionRingCyclotomicFieldOfIsDomainOfNeZeroCast, IsCyclotomicExtension.Rat.cyclotomicRing_isIntegralClosure_of_prime_pow, IsCyclotomicExtension.Rat.cyclotomicRing_isIntegralClosure, instIsScalarTowerCyclotomicField, adjoin_algebra_injective, IsCyclotomicExtension.Rat.cyclotomicRing_isIntegralClosure_of_prime, instIsTorsionFreeCyclotomicField
instCommRing πŸ“–CompOp
11 mathmath: instIsDomain, instIsFractionRingCyclotomicFieldOfIsDomainOfNeZeroCast, IsCyclotomicExtension.Rat.cyclotomicRing_isIntegralClosure_of_prime_pow, IsCyclotomicExtension.Rat.cyclotomicRing_isIntegralClosure, instIsTorsionFreeOfIsDomainOfIsFractionRing, instIsScalarTowerCyclotomicField, adjoin_algebra_injective, algebraBase_injective, IsCyclotomicExtension.Rat.cyclotomicRing_isIntegralClosure_of_prime, instIsTorsionFreeCyclotomicField, isCyclotomicExtension
instInhabited πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_algebra_injective πŸ“–mathematicalβ€”CyclotomicRing
CyclotomicField
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CyclotomicField.instField
RingHom.instFunLike
algebraMap
instAlgebraCyclotomicField
β€”Subtype.val_injective
algebraBase_injective πŸ“–mathematicalβ€”CyclotomicRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
RingHom.instFunLike
algebraMap
algebraBase
β€”FaithfulSMul.algebraMap_injective
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
instIsDomain
instIsTorsionFreeOfIsDomainOfIsFractionRing
eq_adjoin_primitive_root πŸ“–mathematicalIsPrimitiveRoot
CyclotomicField
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CyclotomicField.instField
CyclotomicRing
Subalgebra
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CyclotomicField.algebraBase
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set
Set.instSingletonSet
β€”instIsDomain
IsCyclotomicExtension.adjoin_roots_cyclotomic_eq_adjoin_root_cyclotomic
IsCyclotomicExtension.adjoin_roots_cyclotomic_eq_adjoin_nth_roots
instIsDomain πŸ“–mathematicalβ€”IsDomain
CyclotomicRing
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
β€”Subalgebra.isDomain
instIsDomain
instIsFractionRingCyclotomicFieldOfIsDomainOfNeZeroCast πŸ“–mathematicalβ€”IsFractionRing
CyclotomicRing
CommRing.toCommSemiring
instCommRing
CyclotomicField
Semifield.toCommSemiring
Field.toSemifield
CyclotomicField.instField
instAlgebraCyclotomicField
β€”isUnit_iff_ne_zero
map_ne_zero_of_mem_nonZeroDivisors
IsDomain.toNontrivial
instIsDomain
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
adjoin_algebra_injective
NeZero.nat_of_injective
IsFractionRing.injective
Algebra.adjoin_induction
Algebra.subset_adjoin
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
mul_one
IsLocalization.surj
map_mem_nonZeroDivisors
IsDomain.to_noZeroDivisors
algebraBase_injective
IsScalarTower.algebraMap_apply
instIsScalarTowerCyclotomicField
IsScalarTower.of_algebraMap_eq
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
mul_mem_nonZeroDivisors
add_mul
Distrib.rightDistribClass
mul_assoc
mul_comm
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
IsCyclotomicExtension.iff_singleton
CyclotomicField.isCyclotomicExtension
instIsScalarTowerCyclotomicField πŸ“–mathematicalβ€”IsScalarTower
CyclotomicRing
CyclotomicField
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
instCommRing
algebraBase
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CyclotomicField.instField
instAlgebraCyclotomicField
CyclotomicField.algebraBase
β€”IsScalarTower.subalgebra'
IsScalarTower.right
instIsTorsionFreeCyclotomicField πŸ“–mathematicalβ€”Module.IsTorsionFree
CyclotomicRing
CyclotomicField
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CyclotomicField.instField
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instAlgebraCyclotomicField
β€”Module.isTorsionFree_iff_algebraMap_injective
instIsDomain
instIsDomain
adjoin_algebra_injective
instIsTorsionFreeOfIsDomainOfIsFractionRing πŸ“–mathematicalβ€”Module.IsTorsionFree
CyclotomicRing
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
Algebra.toModule
algebraBase
β€”Subalgebra.instIsTorsionFree
instIsTorsionFreeCyclotomicFieldOfIsDomainOfIsFractionRing
isCyclotomicExtension πŸ“–mathematicalβ€”IsCyclotomicExtension
Set
Set.instSingletonSet
CyclotomicRing
instCommRing
algebraBase
β€”NeZero.of_faithfulSMul
IsScalarTower.right
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsLocalRing.toNontrivial
Field.instIsLocalRing
FaithfulSMul.to_isTorsionFree
IsFractionRing.instFaithfulSMul
IsDomain.toNontrivial
instIsDomain
instIsTorsionFreeCyclotomicFieldOfIsDomainOfIsFractionRing
IsCyclotomicExtension.exists_isPrimitiveRoot
CyclotomicField.isCyclotomicExtension
Set.mem_singleton
Algebra.subset_adjoin
isRoot_of_unity_iff
NeZero.pos
Nat.instCanonicallyOrderedAdd
Nat.mem_divisors_self
Polynomial.isRoot_cyclotomic_iff
SubsemiringClass.toSubmonoidClass
Subalgebra.instSubsemiringClass
IsPrimitiveRoot.coe_submonoidClass_iff
Set.mem_singleton_iff
Algebra.adjoin_induction
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
Subalgebra.coe_eq_one
Subalgebra.coe_pow
Subalgebra.algebraMap_mem
Subalgebra.add_mem
Subalgebra.mul_mem

IntermediateField

Theorems

NameKindAssumesProvesValidatesDepends On
isCyclotomicExtension_adjoin_of_exists_isPrimitiveRoot πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsCyclotomicExtension
IntermediateField
SetLike.instMembership
instSetLike
adjoin
setOf
Set
Set.instMembership
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
β€”Polynomial.Monic.ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
Polynomial.monic_X_pow_sub_C
Polynomial.aeval_sub
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Polynomial.aeval_X
map_one
MonoidHomClass.toOneHomClass
sub_self
IsScalarTower.left
adjoin_toSubalgebra_of_isAlgebraic
Algebra.isCyclotomicExtension_adjoin_of_exists_isPrimitiveRoot
isCyclotomicExtension_eq πŸ“–β€”β€”β€”β€”IsScalarTower.left
IsCyclotomicExtension.eq
instIsDomain
isCyclotomicExtension_lcm_sup πŸ“–mathematicalβ€”IsCyclotomicExtension
Set
Set.instSingletonSet
IntermediateField
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
β€”IsScalarTower.left
IsCyclotomicExtension.finite_of_singleton
instIsDomain
IsCyclotomicExtension.lcm_sup
sup_toSubalgebra_of_left
isCyclotomicExtension_le_of_dvd πŸ“–mathematicalβ€”IntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”IsScalarTower.left
toSubalgebra_le_toSubalgebra
IsCyclotomicExtension.le_of_dvd
instIsDomain
isCyclotomicExtension_singleton_iff_eq_adjoin πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsCyclotomicExtension
Set
Set.instSingletonSet
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
adjoin
β€”IsScalarTower.left
adjoin_simple_toSubalgebra_of_isAlgebraic
IsIntegral.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsIntegral.tower_top
AddCommGroup.intIsScalarTower
IsPrimitiveRoot.isIntegral
NeZero.pos
Nat.instCanonicallyOrderedAdd
isCyclotomicExtension_singleton_iff_eq_adjoin
instIsDomain

IsCyclotomicExtension

Definitions

NameCategoryTheorems
algEquiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_primitive_root_eq_top πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Algebra.adjoin
CommRing.toCommSemiring
CommSemiring.toSemiring
Set
Set.instSingletonSet
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”adjoin_roots_cyclotomic_eq_adjoin_root_cyclotomic
adjoin_roots_cyclotomic_eq_adjoin_nth_roots
iff_adjoin_eq_top
adjoin_roots πŸ“–mathematicalβ€”Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
setOf
Set
Set.instMembership
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”β€”
adjoin_roots_cyclotomic_eq_adjoin_nth_roots πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Algebra.adjoin
CommRing.toCommSemiring
CommSemiring.toSemiring
Polynomial.rootSet
Polynomial.cyclotomic
CommRing.toRing
setOf
Set
Set.instMembership
Set.instSingletonSet
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”le_antisymm
Algebra.adjoin_mono
isRoot_of_unity_iff
NeZero.pos
Nat.instCanonicallyOrderedAdd
Nat.mem_divisors_self
Polynomial.IsRoot.def
Polynomial.map_cyclotomic
Polynomial.eval_map_algebraMap
Polynomial.mem_rootSet'
Algebra.adjoin_le
IsPrimitiveRoot.eq_pow_of_pow_eq_one
SetLike.mem_coe
Subalgebra.pow_mem
Algebra.subset_adjoin
Polynomial.IsRoot.eq_1
Polynomial.cyclotomic_ne_zero
IsDomain.toNontrivial
IsPrimitiveRoot.isRoot_cyclotomic
adjoin_roots_cyclotomic_eq_adjoin_root_cyclotomic πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Algebra.adjoin
CommRing.toCommSemiring
CommSemiring.toSemiring
Polynomial.rootSet
Polynomial.cyclotomic
CommRing.toRing
Set
Set.instSingletonSet
β€”le_antisymm
Algebra.adjoin_le
isRoot_of_unity_iff
NeZero.pos
Nat.instCanonicallyOrderedAdd
Nat.mem_divisors_self
Polynomial.IsRoot.eq_1
Polynomial.map_cyclotomic
Polynomial.eval_map_algebraMap
Polynomial.mem_rootSet'
IsPrimitiveRoot.eq_pow_of_pow_eq_one
SetLike.mem_coe
Subalgebra.pow_mem
Algebra.subset_adjoin
Set.mem_singleton
Algebra.adjoin_mono
Polynomial.cyclotomic_ne_zero
IsDomain.toNontrivial
IsPrimitiveRoot.isRoot_cyclotomic
algEquiv_eq_of_apply_eq πŸ“–β€”IsPrimitiveRoot
CommRing.toCommMonoid
DFunLike.coe
AlgEquiv
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgEquiv.instFunLike
β€”β€”AlgEquiv.ext
adjoin_roots
Algebra.adjoin_induction
IsPrimitiveRoot.eq_pow_of_pow_eq_one
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
AlgEquiv.commutes
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
eq πŸ“–β€”β€”β€”β€”exists_isPrimitiveRoot
SubsemiringClass.toSubmonoidClass
Subalgebra.instSubsemiringClass
IsPrimitiveRoot.coe_submonoidClass_iff
isCyclotomicExtension_iff_eq_adjoin
eq_self_sdiff_zero πŸ“–mathematicalβ€”IsCyclotomicExtension
Set
Set.instSDiff
Set.instSingletonSet
β€”β€”
equiv πŸ“–mathematicalβ€”IsCyclotomicExtensionβ€”iff_union_singleton_one
trans
IsScalarTower.of_algHom
singleton_one_of_algebraMap_bijective
AlgEquiv.surjective
AlgEquiv.injective
exists_isPrimitiveRoot πŸ“–mathematicalSet
Set.instMembership
IsPrimitiveRoot
CommRing.toCommMonoid
β€”β€”
finite πŸ“–mathematicalβ€”Module.Finite
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
β€”Set.Finite.induction_on
Set.finite_coe_iff
Module.finite_def
Finset.coe_singleton
subsingleton_iff_bot_eq_top
instSubsingleton
Algebra.toSubmodule_bot
Submodule.one_eq_span
Set.insert_diff_of_mem
Set.diff_singleton_eq_self
eq_self_sdiff_zero
union_left
Set.subset_insert
Subalgebra.isDomain
union_right
Set.union_singleton
finite_of_singleton
Module.Finite.trans
IsScalarTower.subalgebra'
IsScalarTower.right
finiteDimensional πŸ“–mathematicalβ€”FiniteDimensional
Field.toDivisionRing
Ring.toAddCommGroup
CommRing.toRing
Algebra.toModule
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”finite
finite_of_singleton πŸ“–mathematicalβ€”Module.Finite
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
β€”Module.finite_def
Algebra.top_toSubmodule
iff_adjoin_eq_top
fg_adjoin_of_finite
Set.ext
Finset.finite_toSet
Polynomial.monic_X_pow_sub_C
Polynomial.evalβ‚‚_sub
Polynomial.evalβ‚‚_X_pow
Polynomial.evalβ‚‚_one
iff_adjoin_eq_top πŸ“–mathematicalβ€”IsCyclotomicExtension
IsPrimitiveRoot
CommRing.toCommMonoid
Algebra.adjoin
CommRing.toCommSemiring
CommSemiring.toSemiring
setOf
Set
Set.instMembership
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”exists_isPrimitiveRoot
Algebra.eq_top_iff
adjoin_roots
iff_singleton πŸ“–mathematicalβ€”IsCyclotomicExtension
Set
Set.instSingletonSet
IsPrimitiveRoot
CommRing.toCommMonoid
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
setOf
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”β€”
iff_union_of_dvd πŸ“–mathematicalSet
Set.instMembership
IsCyclotomicExtension
Set.instUnion
Set.instSingletonSet
β€”of_union_of_dvd
iff_adjoin_eq_top
exists_isPrimitiveRoot
Set.subset_union_left
eq_top_iff
Algebra.adjoin_mono
Set.union_singleton
pow_mul
one_pow
iff_union_singleton_one πŸ“–mathematicalβ€”IsCyclotomicExtension
Set
Set.instUnion
Set.instSingletonSet
β€”iff_union_of_dvd
Unique.instSubsingleton
eq_self_sdiff_zero
Set.union_diff_distrib
Set.ext
Set.empty_union
Set.diff_singleton_eq_self
iff_adjoin_eq_top
Set.mem_singleton_iff
pow_one
Algebra.adjoin_singleton_one
subsingleton_iff_bot_eq_top
instSubsingleton
Set.notMem_empty
Algebra.adjoin_empty
singleton_one
instSubsingleton πŸ“–mathematicalβ€”Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”subsingleton_of_bot_eq_top
instIsEmptyFalse
Algebra.adjoin_empty
integral πŸ“–mathematicalβ€”Algebra.IsIntegral
CommRing.toRing
β€”AlgEquiv.isIntegral_iff
iff_adjoin_eq_top
Algebra.IsIntegral.adjoin
Polynomial.monic_X_pow_sub_C
Polynomial.evalβ‚‚_sub
Polynomial.evalβ‚‚_X_pow
Polynomial.evalβ‚‚_one
sub_self
isAbelianGalois πŸ“–mathematicalβ€”IsAbelianGaloisβ€”isGalois
isMulCommutative
instIsDomain
isCyclotomicExtension_zero_iff πŸ“–mathematicalβ€”IsCyclotomicExtension
Set
Set.instSingletonSet
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”Algebra.surjective_algebraMap_iff
eq_self_sdiff_zero
sdiff_self
Set.bot_eq_empty
subsingleton_iff_bot_eq_top
instSubsingleton
singleton_zero_of_bot_eq_top
isGalois πŸ“–mathematicalβ€”IsGaloisβ€”isGalois_iff
isSeparable
IsScalarTower.left
nonempty_algEquiv_adjoin_of_isSepClosed
IsSepClosed.of_isAlgClosed
AlgebraicClosure.isAlgClosed
AlgEquiv.transfer_normal
IntermediateField.normal_iff_forall_map_le
IsAlgClosure.normal
AlgebraicClosure.instIsAlgClosureOfIsAlgebraic
Algebra.IsSeparable.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
Algebra.isSeparable_self
Subalgebra.mem_map
IntermediateField.toSubalgebra_map
IntermediateField.mem_toSubalgebra
IntermediateField.adjoin_induction
IntermediateField.subset_adjoin
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
map_one
MonoidHomClass.toOneHomClass
AlgHom.commutes
IntermediateField.algebraMap_mem
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
map_invβ‚€
InvMemClass.inv_mem
SubfieldClass.toInvMemClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
isMulCommutative πŸ“–mathematicalβ€”IsMulCommutative
AlgEquiv
CommRing.toCommSemiring
CommSemiring.toSemiring
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
β€”algEquiv_eq_of_apply_eq
exists_isPrimitiveRoot
IsPrimitiveRoot.eq_pow_of_pow_eq_one
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
IsPrimitiveRoot.pow_eq_one
map_one
MonoidHomClass.toOneHomClass
mul_comm
isSeparable πŸ“–mathematicalβ€”Algebra.IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
β€”integral
iff_adjoin_eq_top
IsScalarTower.left
AlgEquiv.Algebra.isSeparable_iff
IntermediateField.toSubalgebra_injective
IntermediateField.top_toSubalgebra
IntermediateField.adjoin_toSubalgebra_of_isAlgebraic
Algebra.IsAlgebraic.isAlgebraic
Algebra.IsIntegral.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
IntermediateField.isSeparable_adjoin_iff_isSeparable
Polynomial.X_pow_sub_one_separable_iff
neZero_of_mem'
instIsDomain
Polynomial.Separable.of_dvd
minpoly.dvd
Polynomial.aeval_sub
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Polynomial.aeval_X
map_one
MonoidHomClass.toOneHomClass
sub_self
isSplittingField_X_pow_sub_one πŸ“–mathematicalβ€”Polynomial.IsSplittingField
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
Polynomial.instOne
β€”splits_X_pow_sub_one
Set.mem_singleton
instIsDomain
iff_adjoin_eq_top
Set.ext
Polynomial.map_sub
Polynomial.map_pow
Polynomial.map_X
Polynomial.map_one
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
Polynomial.aeval_X
Polynomial.aeval_one
Polynomial.X_pow_sub_C_ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
NeZero.pos
Nat.instCanonicallyOrderedAdd
lcm_sup πŸ“–mathematicalβ€”IsCyclotomicExtension
Set
Set.instSingletonSet
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Algebra.instCompleteLatticeSubalgebra
Subalgebra.toCommRing
Subalgebra.algebra
β€”exists_isPrimitiveRoot
IsPrimitiveRoot.map_of_injective
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
FaithfulSMul.algebraMap_injective
Subalgebra.instFaithfulSMulSubtypeMem
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.self
IsDomain.toNontrivial
IsPrimitiveRoot.pow_mul_pow_lcm
sup_comm
isCyclotomicExtension_singleton_iff_eq_adjoin
Algebra.adjoin_union
Set.union_singleton
IsPrimitiveRoot.adjoin_pair_eq
IsPrimitiveRoot.adjoin_isCyclotomicExtension
le_of_dvd πŸ“–mathematicalβ€”Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
β€”eq_zero_of_zero_dvd
exists_isPrimitiveRoot
IsPrimitiveRoot.map_of_injective
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
FaithfulSMul.algebraMap_injective
Subalgebra.instFaithfulSMulSubtypeMem
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.self
IsDomain.toNontrivial
IsPrimitiveRoot.pow
mul_comm
isCyclotomicExtension_singleton_iff_eq_adjoin
Algebra.adjoin_le
Set.singleton_subset_iff
Subalgebra.pow_mem
Algebra.self_mem_adjoin_singleton
mem_of_pow_eq_one πŸ“–mathematicalSet
Set.instMembership
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
β€”exists_isPrimitiveRoot
IsPrimitiveRoot.map_of_injective
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
FaithfulSMul.algebraMap_injective
Subalgebra.instFaithfulSMulSubtypeMem
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.self
IsDomain.toNontrivial
IsPrimitiveRoot.eq_pow_of_pow_eq_one
map_pow
Subalgebra.pow_mem
Subtype.prop
neZero πŸ“–mathematicalβ€”MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”neZero_of_mem
Set.mem_singleton
neZero' πŸ“–mathematicalβ€”MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”neZero_of_mem'
Set.mem_singleton
neZero_of_mem πŸ“–mathematicalSet
Set.instMembership
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”IsPrimitiveRoot.neZero'
exists_isPrimitiveRoot
neZero_of_mem' πŸ“–mathematicalSet
Set.instMembership
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”NeZero.nat_of_neZero
RingHom.instRingHomClass
neZero_of_mem
nonempty_algEquiv_adjoin_of_exists_isPrimitiveRoot πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AlgEquiv
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
setOf
Set
Set.instMembership
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Semifield.toCommSemiring
IntermediateField.toField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
β€”IsScalarTower.left
IntermediateField.isCyclotomicExtension_adjoin_of_exists_isPrimitiveRoot
nonempty_algEquiv_adjoin_of_isSepClosed πŸ“–mathematicalβ€”AlgEquiv
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
setOf
Set
Set.instMembership
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Semifield.toCommSemiring
IntermediateField.toField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
β€”isSeparable
IsScalarTower.left
IsLocalRing.toNontrivial
Field.instIsLocalRing
le_antisymm
iff_adjoin_eq_top
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
Subalgebra.ext
AlgEquiv.apply_symm_apply
AlgHom.mem_range
Algebra.adjoin_induction
Algebra.subset_adjoin
IntermediateField.subset_adjoin
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
map_one
MonoidHomClass.toOneHomClass
Subtype.val_injective
algebraMap_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
Subalgebra.instSubsemiringClass
Subalgebra.instSMulMemClass
AlgHom.commutes
IntermediateField.algebraMap_mem
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SubsemiringClass.toAddSubmonoidClass
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
IntermediateField.adjoin_le_iff
exists_isPrimitiveRoot
IsPrimitiveRoot.eq_pow_of_pow_eq_one
instIsDomain
IsPrimitiveRoot.map_of_injective
RingHom.injective
DivisionRing.isSimpleRing
numberField πŸ“–mathematicalβ€”NumberFieldβ€”charZero_of_injective_algebraMap
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
NumberField.to_charZero
Module.Finite.trans
IsScalarTower.rat
NumberField.to_finiteDimensional
finite
instIsDomain
of_union_of_dvd πŸ“–mathematicalSet
Set.instMembership
IsCyclotomicExtension
Set.instUnion
Set.instSingletonSet
β€”iff_adjoin_eq_top
Set.mem_singleton_iff
Set.mem_union
exists_isPrimitiveRoot
IsPrimitiveRoot.pow_of_dvd
dvd_mul_left
mul_div_cancel_rightβ‚€
Nat.instMulDivCancelClass
eq_top_iff
Algebra.adjoin_mono
Set.union_singleton
singleton_one πŸ“–mathematicalβ€”Bot.bot
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Top.top
OrderTop.toTop
BoundedOrder.toOrderTop
β€”Algebra.eq_top_iff
pow_one
Algebra.adjoin_singleton_one
isCyclotomicExtension_iff
singleton_one_of_algebraMap_bijective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
IsCyclotomicExtension
Set
Set.instSingletonSet
β€”singleton_one_of_bot_eq_top
Algebra.surjective_algebraMap_iff
singleton_one_of_bot_eq_top πŸ“–mathematicalBot.bot
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Top.top
OrderTop.toTop
BoundedOrder.toOrderTop
IsCyclotomicExtension
Set
Set.instSingletonSet
β€”Set.union_singleton
Set.insert_diff_eq_singleton
iff_union_singleton_one
singleton_zero_of_bot_eq_top
eq_self_sdiff_zero
singleton_zero_of_bot_eq_top πŸ“–mathematicalBot.bot
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Top.top
OrderTop.toTop
BoundedOrder.toOrderTop
IsCyclotomicExtension
Set
Set.instSingletonSet
β€”iff_adjoin_eq_top
instIsEmptyFalse
pow_zero
Algebra.adjoin_empty
splits_X_pow_sub_one πŸ“–mathematicalSet
Set.instMembership
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
Polynomial
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
Polynomial.instOne
β€”Polynomial.map_sub
Polynomial.map_one
Polynomial.map_pow
Polynomial.map_X
isCyclotomicExtension_iff
Polynomial.X_pow_sub_one_splits
splits_cyclotomic πŸ“–mathematicalSet
Set.instMembership
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
Polynomial.cyclotomic
DivisionRing.toRing
Field.toDivisionRing
β€”Polynomial.Splits.of_dvd
instIsDomain
splits_X_pow_sub_one
Polynomial.map_ne_zero
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Polynomial.X_pow_sub_C_ne_zero
NeZero.pos
Nat.instCanonicallyOrderedAdd
Polynomial.map_dvd_map'
Polynomial.eq_cyclotomic_iff
splitting_field_cyclotomic πŸ“–mathematicalβ€”Polynomial.IsSplittingField
Polynomial.cyclotomic
DivisionRing.toRing
Field.toDivisionRing
β€”splits_cyclotomic
Set.mem_singleton
instIsDomain
iff_adjoin_eq_top
exists_isPrimitiveRoot
adjoin_roots_cyclotomic_eq_adjoin_nth_roots
subsingleton_iff πŸ“–mathematicalβ€”IsCyclotomicExtension
Set
Set.instHasSubset
Set.instInsert
Set.instSingletonSet
β€”Subalgebra.subsingleton_of_subsingleton
Set.subset_pair_iff
IsPrimitiveRoot.unique
IsPrimitiveRoot.of_subsingleton
Lean.Meta.FastSubsingleton.elim
Algebra.mem_top
trans πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
IsCyclotomicExtension
Set
Set.instUnion
β€”isCyclotomicExtension_iff
IsPrimitiveRoot.map_of_injective
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Algebra.adjoin_induction
Algebra.subset_adjoin
Algebra.adjoin_mono
Set.mem_union_left
map_pow
AlgHomClass.toRingHomClass
AlgHom.algHomClass
map_one
MonoidHomClass.toOneHomClass
Algebra.adjoin_image
IsScalarTower.toAlgHom_apply
Subalgebra.add_mem
Subalgebra.mul_mem
union_left πŸ“–mathematicalSet
Set.instHasSubset
IsCyclotomicExtension
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
setOf
Set.instMembership
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Subalgebra.toCommRing
Subalgebra.algebra
β€”isCyclotomicExtension_iff
Algebra.subset_adjoin
IsPrimitiveRoot.pow_eq_one
SubsemiringClass.toSubmonoidClass
Subalgebra.instSubsemiringClass
IsPrimitiveRoot.coe_submonoidClass_iff
Algebra.adjoin_adjoin_coe_preimage
Set.preimage_setOf_eq
Nat.cast_one
Algebra.mem_top
union_of_isPrimitiveRoot πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
IsCyclotomicExtension
Set
Set.instUnion
Set.instSingletonSet
β€”eq_self_sdiff_zero
Set.union_diff_right
iff_adjoin_eq_top
exists_isPrimitiveRoot
le_antisymm
Set.union_singleton
Algebra.adjoin_mono
union_right πŸ“–mathematicalβ€”IsCyclotomicExtension
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
setOf
Set
Set.instMembership
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Subalgebra.toCommRing
Subalgebra.toAlgebra
Algebra.id
β€”le_antisymm
isCyclotomicExtension_iff
Set.mem_union_right
IsScalarTower.subalgebra'
IsScalarTower.right
Subalgebra.mem_restrictScalars
Algebra.adjoin_union_eq_adjoin_adjoin

IsPrimitiveRoot

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_isCyclotomicExtension πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
IsCyclotomicExtension
Set
Set.instSingletonSet
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Polynomial.instCommRingAdjoinSingleton
CommRing.toRing
Subalgebra.algebra
β€”Algebra.subset_adjoin
Set.mem_singleton
SubsemiringClass.toSubmonoidClass
Subalgebra.instSubsemiringClass
coe_submonoidClass_iff
Set.mem_singleton_iff
Algebra.adjoin_induction
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
Subalgebra.coe_eq_one
Subalgebra.coe_pow
iff_def
Subalgebra.algebraMap_mem
Subalgebra.add_mem
Subalgebra.mul_mem
intermediateField_adjoin_isCyclotomicExtension πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsCyclotomicExtension
Set
Set.instSingletonSet
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
IntermediateField.toField
IntermediateField.algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
β€”IsScalarTower.left
IntermediateField.adjoin_simple_toSubalgebra_of_isAlgebraic
Algebra.IsAlgebraic.isAlgebraic
Algebra.IsIntegral.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
adjoin_isCyclotomicExtension

IsSepClosed

Theorems

NameKindAssumesProvesValidatesDepends On
isCyclotomicExtension πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
IsCyclotomicExtension
Algebra.id
CommRing.toCommSemiring
β€”exists_aeval_eq_zero
instFaithfulSMul_1
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
LT.lt.ne'
Polynomial.degree_cyclotomic_pos
Polynomial.separable_cyclotomic
Polynomial.isRoot_cyclotomic_iff
instIsDomain
Polynomial.IsRoot.def
Polynomial.coe_aeval_eq_eval
Algebra.eq_top_iff
Unique.instSubsingleton

IsSepClosedOfCharZero

Theorems

NameKindAssumesProvesValidatesDepends On
isCyclotomicExtension πŸ“–mathematicalβ€”IsCyclotomicExtension
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.id
CommRing.toCommSemiring
β€”IsCyclotomicExtension.eq_self_sdiff_zero
IsSepClosed.isCyclotomicExtension
Nat.cast_ne_zero

(root)

Definitions

NameCategoryTheorems
CyclotomicField πŸ“–CompOp
15 mathmath: instIsTorsionFreeCyclotomicFieldOfIsDomainOfIsFractionRing, CyclotomicRing.instIsFractionRingCyclotomicFieldOfIsDomainOfNeZeroCast, CyclotomicField.instNumberField, IsCyclotomicExtension.Rat.cyclotomicRing_isIntegralClosure_of_prime_pow, IsCyclotomicExtension.Rat.cyclotomicRing_isIntegralClosure, CyclotomicRing.instIsScalarTowerCyclotomicField, AddChar.PrimitiveAddChar.prim, CyclotomicField.instIsCyclotomicExtensionSingletonNatSetOfCharZero, CyclotomicRing.adjoin_algebra_injective, instIsScalarTowerCyclotomicField, IsCyclotomicExtension.Rat.cyclotomicRing_isIntegralClosure_of_prime, CyclotomicRing.instIsTorsionFreeCyclotomicField, CyclotomicField.isCyclotomicExtension, CyclotomicField.instIsCyclotomicExtensionSingletonNatSetOfNat, CyclotomicField.instCharZero
CyclotomicRing πŸ“–CompOp
12 mathmath: CyclotomicRing.instIsDomain, CyclotomicRing.instIsFractionRingCyclotomicFieldOfIsDomainOfNeZeroCast, IsCyclotomicExtension.Rat.cyclotomicRing_isIntegralClosure_of_prime_pow, IsCyclotomicExtension.Rat.cyclotomicRing_isIntegralClosure, CyclotomicRing.instIsTorsionFreeOfIsDomainOfIsFractionRing, CyclotomicRing.instIsScalarTowerCyclotomicField, CyclotomicRing.adjoin_algebra_injective, CyclotomicRing.algebraBase_injective, IsCyclotomicExtension.Rat.cyclotomicRing_isIntegralClosure_of_prime, CyclotomicRing.instIsTorsionFreeCyclotomicField, CyclotomicRing.isCyclotomicExtension, CyclotomicRing.eq_adjoin_primitive_root
IsCyclotomicExtension πŸ“–CompData
35 mathmath: IntermediateField.isCyclotomicExtension_singleton_iff_eq_adjoin, IsCyclotomicExtension.iff_union_of_dvd, IsCyclotomicExtension.isCyclotomicExtension_zero_iff, IsSepClosedOfCharZero.isCyclotomicExtension, IsCyclotomicExtension.singleton_zero_of_bot_eq_top, Algebra.isCyclotomicExtension_adjoin_of_exists_isPrimitiveRoot, IntermediateField.isCyclotomicExtension_lcm_sup, IsCyclotomicExtension.subsingleton_iff, IsCyclotomicExtension.singleton_one_of_algebraMap_bijective, isCyclotomicExtension_iff_eq_adjoin, IsSepClosed.isCyclotomicExtension, IsCyclotomicExtension.ring_of_integers', IsCyclotomicExtension.ringOfIntegers, IsCyclotomicExtension.union_of_isPrimitiveRoot, IsCyclotomicExtension.iff_singleton, CyclotomicField.instIsCyclotomicExtensionSingletonNatSetOfCharZero, IsCyclotomicExtension.of_union_of_dvd, IsCyclotomicExtension.trans, isCyclotomicExtension_singleton_iff_eq_adjoin, IsCyclotomicExtension.union_left, IsCyclotomicExtension.equiv, isCyclotomicExtension_iff, IsCyclotomicExtension.iff_adjoin_eq_top, IsCyclotomicExtension.eq_self_sdiff_zero, IsPrimitiveRoot.IsCyclotomicExtension.ringOfIntegersOfPrimePow, IntermediateField.isCyclotomicExtension_adjoin_of_exists_isPrimitiveRoot, CyclotomicField.isCyclotomicExtension, CyclotomicRing.isCyclotomicExtension, IsCyclotomicExtension.singleton_one_of_bot_eq_top, IsPrimitiveRoot.adjoin_isCyclotomicExtension, CyclotomicField.instIsCyclotomicExtensionSingletonNatSetOfNat, IsCyclotomicExtension.union_right, IsCyclotomicExtension.iff_union_singleton_one, IsPrimitiveRoot.intermediateField_adjoin_isCyclotomicExtension, IsCyclotomicExtension.lcm_sup

Theorems

NameKindAssumesProvesValidatesDepends On
instIsScalarTowerCyclotomicField πŸ“–mathematicalβ€”IsScalarTower
CyclotomicField
Algebra.toSMul
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CyclotomicField.instField
CyclotomicField.algebraBase
Algebra.id
β€”β€”
instIsTorsionFreeCyclotomicFieldOfIsDomainOfIsFractionRing πŸ“–mathematicalβ€”Module.IsTorsionFree
CyclotomicField
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CyclotomicField.instField
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CyclotomicField.algebraBase
β€”Module.isTorsionFree_iff_faithfulSMul
instIsDomain
faithfulSMul_iff_algebraMap_injective
IsScalarTower.algebraMap_eq
instIsScalarTowerCyclotomicField
FaithfulSMul.algebraMap_injective
instFaithfulSMul_1
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsFractionRing.injective
isCyclotomicExtension_iff πŸ“–mathematicalβ€”IsCyclotomicExtension
IsPrimitiveRoot
CommRing.toCommMonoid
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
setOf
Set
Set.instMembership
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”β€”
isCyclotomicExtension_iff_eq_adjoin πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
IsCyclotomicExtension
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Subalgebra.toCommRing
Subalgebra.algebra
Algebra.adjoin
setOf
Set
Set.instMembership
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”IsCyclotomicExtension.iff_adjoin_eq_top
Subalgebra.range_val
Algebra.map_top
AlgHom.map_adjoin
Set.ext
Set.image_congr
IsCyclotomicExtension.mem_of_pow_eq_one
Algebra.isCyclotomicExtension_adjoin_of_exists_isPrimitiveRoot
isCyclotomicExtension_singleton_iff_eq_adjoin πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
IsCyclotomicExtension
Set
Set.instSingletonSet
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Subalgebra.toCommRing
Subalgebra.algebra
Algebra.adjoin
β€”isCyclotomicExtension_iff_eq_adjoin
le_antisymm
Algebra.adjoin_le
IsPrimitiveRoot.eq_pow_of_pow_eq_one
Subalgebra.pow_mem
Algebra.self_mem_adjoin_singleton
Algebra.adjoin_mono
Set.singleton_subset_iff
IsPrimitiveRoot.pow_eq_one

---

← Back to Index