Documentation Verification Report

CyclotomicCharacter

πŸ“ Source: Mathlib/NumberTheory/Cyclotomic/CyclotomicCharacter.lean

Statistics

MetricCount
DefinitionscyclotomicCharacter, toFun, modularCyclotomicCharacter, modularCyclotomicCharacter', aux, toFun
6
TheoremsautToPow_eq_modularCyclotomicCharacter, continuous, spec, toFun_apply, toFun_spec, toZModPow, toZModPow_toFun, spec', unique', aux_spec, comp, id, pow_dvd_aux_pow_sub_aux_pow, spec, toFun_spec, toFun_spec', toFun_spec'', toFun_unique, toFun_unique', unique, integer_power_of_ringEquiv, integer_power_of_ringEquiv'
22
Total28

IsPrimitiveRoot

Theorems

NameKindAssumesProvesValidatesDepends On
autToPow_eq_modularCyclotomicCharacter πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
DFunLike.coe
MonoidHom
AlgEquiv
CommRing.toCommSemiring
CommSemiring.toSemiring
Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
ZMod.commRing
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
Units.instMulOneClass
MonoidHom.instFunLike
autToPow
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
RingAut.instGroup
modularCyclotomicCharacter
card_rootsOfUnity
RingEquivClass.toRingEquiv
AlgEquiv.instEquivLike
AlgEquivClass.toRingEquivClass
AlgEquiv.instAlgEquivClass
β€”Units.ext
card_rootsOfUnity
AlgEquivClass.toRingEquivClass
AlgEquiv.instAlgEquivClass
ZMod.val_injective
ZMod.val_lt
autToPow_spec
ZMod.ringEquivCongr_val
modularCyclotomicCharacter.toFun_spec''

(root)

Definitions

NameCategoryTheorems
cyclotomicCharacter πŸ“–CompOp
3 mathmath: cyclotomicCharacter.toZModPow, cyclotomicCharacter.spec, cyclotomicCharacter.continuous
modularCyclotomicCharacter πŸ“–CompOp
5 mathmath: cyclotomicCharacter.toZModPow, modularCyclotomicCharacter.spec, IsPrimitiveRoot.autToPow_eq_modularCyclotomicCharacter, modularCyclotomicCharacter.unique, cyclotomicCharacter.toZModPow_toFun
modularCyclotomicCharacter' πŸ“–CompOp
2 mathmath: modularCyclotomicCharacter'.spec', modularCyclotomicCharacter'.unique'

cyclotomicCharacter

Definitions

NameCategoryTheorems
toFun πŸ“–CompOp
3 mathmath: toFun_apply, toZModPow_toFun, toFun_spec

Theorems

NameKindAssumesProvesValidatesDepends On
continuous πŸ“–mathematicalβ€”Continuous
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Units
PadicInt
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
PadicInt.instCommRing
krullTopology
Units.instTopologicalSpaceUnits
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
PadicInt.instNormedCommRing
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
Units.instMulOneClass
MonoidHom.instFunLike
MonoidHom.comp
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Distrib.toAdd
RingAut.instGroup
cyclotomicCharacter
instIsDomain
MulSemiringAction.toRingAut
AlgEquiv.applyMulSemiringAction
β€”instIsDomain
Continuous.of_coeHom_comp
IsTopologicalGroup.toContinuousInv
instIsTopologicalGroupAlgEquiv
continuous_of_continuousAt_one
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalSeminormedRing.toIsTopologicalRing
MonoidHom.instMonoidHomClass
ContinuousAt.eq_1
map_one
MonoidHomClass.toOneHomClass
Filter.HasBasis.tendsto_iff
GroupFilterBasis.nhds_one_hasBasis
Metric.nhds_basis_ball
PadicInt.exists_pow_neg_lt
lt_of_le_of_lt
zpow_le_zpow_rightβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsStrictOrderedRing.toCharZero
Nat.Prime.one_le
Fact.out
neg_le_neg
Int.instIsOrderedAddMonoid
Nat.mono_cast
Int.instAddLeftMono
Int.instZeroLEOneClass
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
IntermediateField.adjoin.finiteDimensional
IsIntegral.tower_top
AddCommGroup.intIsScalarTower
IsPrimitiveRoot.isIntegral
NeZero.of_gt'
Nat.Prime.one_lt'
AlgEquivClass.toRingEquivClass
AlgEquiv.instAlgEquivClass
dist_eq_norm
PadicInt.norm_le_pow_iff_mem_span_pow
RingHom.instRingHomClass
PadicInt.ker_toZModPow
RingHom.mem_ker
map_sub
RingHomClass.toAddMonoidHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
Fintype.card_eq_nat_card
HasEnoughRootsOfUnity.natCard_rootsOfUnity
rootsOfUnity.isCyclic
toZModPow
sub_eq_zero
modularCyclotomicCharacter.unique
IsPrimitiveRoot.isUnit
IsPrimitiveRoot.eq_pow_of_mem_rootsOfUnity
IsPrimitiveRoot.isUnit_unit
ZMod.val_one''
LT.lt.ne'
one_lt_powβ‚€
Nat.instZeroLEOneClass
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.Prime.one_lt
pow_one
pow_mem
SubsemiringClass.toSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IntermediateField.mem_adjoin_simple_self
continuous_const
spec πŸ“–mathematicalHasEnoughRootsOfUnity
CommRing.toCommMonoid
Monoid.toNatPow
Nat.instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
ZMod.val
RingHom
PadicInt
ZMod
Semiring.toNonAssocSemiring
PadicInt.instCommRing
ZMod.commRing
RingHom.instFunLike
PadicInt.toZModPow
Units.val
MonoidHom
Units
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
RingAut.instGroup
Units.instMulOneClass
MonoidHom.instFunLike
cyclotomicCharacter
β€”toFun_spec
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
toFun_apply πŸ“–mathematicalHasEnoughRootsOfUnity
CommRing.toCommMonoid
Monoid.toNatPow
Nat.instMonoid
toFun
PadicInt.ofIntSeq
modularCyclotomicCharacter.aux
NeZero.of_gt'
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Nat.instPreorder
Nat.instCanonicallyOrderedAdd
Nat.instOne
Nat.Prime.one_lt'
PadicInt.isCauSeq_padicNorm_of_pow_dvd_sub
modularCyclotomicCharacter.pow_dvd_aux_pow_sub_aux_pow
β€”HasEnoughRootsOfUnity.exists_primitiveRoot
toFun_spec πŸ“–mathematicalHasEnoughRootsOfUnity
CommRing.toCommMonoid
Monoid.toNatPow
Nat.instMonoid
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
Units.val
CommMonoid.toMonoid
Units
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.val
RingHom
PadicInt
ZMod
Semiring.toNonAssocSemiring
PadicInt.instCommRing
ZMod.commRing
RingHom.instFunLike
PadicInt.toZModPow
toFun
β€”NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
Fintype.card_eq_nat_card
HasEnoughRootsOfUnity.natCard_rootsOfUnity
toZModPow_toFun
modularCyclotomicCharacter.spec
toZModPow πŸ“–mathematicalHasEnoughRootsOfUnity
CommRing.toCommMonoid
Monoid.toNatPow
Nat.instMonoid
DFunLike.coe
RingHom
PadicInt
ZMod
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
PadicInt.instCommRing
ZMod.commRing
RingHom.instFunLike
PadicInt.toZModPow
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MonoidHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
Units
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
RingAut.instGroup
Units.instMulOneClass
MonoidHom.instFunLike
cyclotomicCharacter
modularCyclotomicCharacter
NeZero.of_gt'
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Nat.instPreorder
Nat.instCanonicallyOrderedAdd
Nat.instOne
Nat.Prime.one_lt'
Fintype.card
CommMonoid.toMonoid
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
rootsOfUnity.fintype
Nat.card
Fintype.card_eq_nat_card
HasEnoughRootsOfUnity.natCard_rootsOfUnity
β€”toZModPow_toFun
toZModPow_toFun πŸ“–mathematicalHasEnoughRootsOfUnity
CommRing.toCommMonoid
Monoid.toNatPow
Nat.instMonoid
DFunLike.coe
RingHom
PadicInt
ZMod
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
PadicInt.instCommRing
ZMod.commRing
RingHom.instFunLike
PadicInt.toZModPow
toFun
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MonoidHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
Units
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
RingAut.instGroup
Units.instMulOneClass
MonoidHom.instFunLike
modularCyclotomicCharacter
NeZero.of_gt'
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Nat.instPreorder
Nat.instCanonicallyOrderedAdd
Nat.instOne
Nat.Prime.one_lt'
Fintype.card
CommMonoid.toMonoid
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
rootsOfUnity.fintype
Nat.card
Fintype.card_eq_nat_card
HasEnoughRootsOfUnity.natCard_rootsOfUnity
β€”NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
Fintype.card_eq_nat_card
HasEnoughRootsOfUnity.natCard_rootsOfUnity
PadicInt.isCauSeq_padicNorm_of_pow_dvd_sub
modularCyclotomicCharacter.pow_dvd_aux_pow_sub_aux_pow
toFun_apply
PadicInt.toZModPow_ofIntSeq_of_pow_dvd_sub
map_intCast
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass

modularCyclotomicCharacter

Definitions

NameCategoryTheorems
aux πŸ“–CompOp
3 mathmath: pow_dvd_aux_pow_sub_aux_pow, cyclotomicCharacter.toFun_apply, aux_spec
toFun πŸ“–CompOp
7 mathmath: id, toFun_unique', toFun_spec', toFun_spec, comp, toFun_unique, toFun_spec''

Theorems

NameKindAssumesProvesValidatesDepends On
aux_spec πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
Units.val
CommMonoid.toMonoid
CommRing.toCommMonoid
Units
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
DivInvMonoid.toZPow
Units.instDivInvMonoid
aux
β€”rootsOfUnity.integer_power_of_ringEquiv
comp πŸ“–mathematicalβ€”toFun
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
RingAut.instGroup
ZMod
Fintype.card
Units
CommMonoid.toMonoid
CommRing.toCommMonoid
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
rootsOfUnity.fintype
ZMod.commRing
β€”toFun_unique
toFun_spec
Subgroup.coe_pow
mul_comm
pow_mul
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
Nat.cast_mul
ZMod.natCast_val
Fintype.instNeZeroNatCardOfNonempty
One.instNonempty
ZMod.cast_mul
orderOf_dvd_card
ZMod.charP
id πŸ“–mathematicalβ€”toFun
RingEquiv.refl
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
ZMod
Fintype.card
Units
CommMonoid.toMonoid
CommRing.toCommMonoid
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
rootsOfUnity.fintype
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
ZMod.commRing
β€”toFun_unique
Fin.size_positive'
Fintype.instNeZeroNatCardOfNonempty
One.instNonempty
LE.le.lt_or_eq
ZMod.val_one
pow_one
Fintype.card_le_one_iff_subsingleton
Eq.ge
one_pow
pow_dvd_aux_pow_sub_aux_pow πŸ“–mathematicalHasEnoughRootsOfUnity
CommRing.toCommMonoid
Monoid.toNatPow
Nat.instMonoid
Int.instMonoid
aux
NeZero.of_gt'
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Nat.instPreorder
Nat.instCanonicallyOrderedAdd
Nat.instOne
Nat.Prime.one_lt'
β€”NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
ExistsAddOfLE.exists_add_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
HasEnoughRootsOfUnity.exists_primitiveRoot
IsPrimitiveRoot.pow
IsPrimitiveRoot.isUnit
Units.ext
IsPrimitiveRoot.mem_rootsOfUnity
IsPrimitiveRoot.isUnit_unit
aux_spec
Nat.cast_pow
mul_dvd_mul_iff_left
IsCancelMulZero.toIsLeftCancelMulZero
Int.instIsCancelMulZero
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
Int.instNormMulClass
Int.instNontrivial
Nat.cast_mul
mul_sub
mul_comm
IsPrimitiveRoot.zpow_eq_one_iff_dvd
div_eq_mul_inv
div_eq_one
Units.ext_iff
Units.val_pow_eq_pow_val
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
spec πŸ“–mathematicalFintype.card
Units
CommMonoid.toMonoid
CommRing.toCommMonoid
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
rootsOfUnity.fintype
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
Units.val
Monoid.toNatPow
ZMod.val
ZMod
ZMod.commRing
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
RingAut.instGroup
Units.instMulOneClass
MonoidHom.instFunLike
modularCyclotomicCharacter
β€”toFun_spec'
ZMod.ringEquivCongr_val
toFun_spec πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
Units.val
CommMonoid.toMonoid
CommRing.toCommMonoid
Units
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
Monoid.toNatPow
Units.instMonoid
ZMod.val
Fintype.card
rootsOfUnity.fintype
toFun
β€”aux_spec
zpow_natCast
toFun.eq_1
ZMod.val_intCast
Fintype.instNeZeroNatCardOfNonempty
One.instNonempty
Subgroup.coe_zpow
Units.ext_iff
SetCoe.ext_iff
zpow_eq_zpow_emod
pow_card_eq_one
toFun_spec' πŸ“–mathematicalUnits
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Subgroup
CommMonoid.toMonoid
CommRing.toCommMonoid
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
Units.val
Monoid.toNatPow
ZMod.val
Fintype.card
rootsOfUnity.fintype
toFun
β€”toFun_spec
toFun_spec'' πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.val
Fintype.card
Units
CommMonoid.toMonoid
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
rootsOfUnity.fintype
toFun
β€”toFun_spec'
SetLike.coe_mem
toFun_unique πŸ“–mathematicalDFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
Units.val
CommMonoid.toMonoid
CommRing.toCommMonoid
Units
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
Monoid.toNatPow
Units.instMonoid
ZMod.val
Fintype.card
rootsOfUnity.fintype
toFunβ€”IsCyclic.ext
Finite.of_fintype
rootsOfUnity.isCyclic
Nat.card_eq_fintype_card
toFun_spec
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
toFun_unique' πŸ“–mathematicalDFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
Units.val
CommMonoid.toMonoid
CommRing.toCommMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.val
Fintype.card
Units
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
rootsOfUnity.fintype
toFunβ€”toFun_unique
unique πŸ“–mathematicalFintype.card
Units
CommMonoid.toMonoid
CommRing.toCommMonoid
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
rootsOfUnity.fintype
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
Units.val
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.val
ZMod
ZMod.commRing
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
RingAut.instGroup
Units.instMulOneClass
MonoidHom.instFunLike
modularCyclotomicCharacter
β€”toFun_unique'
ZMod.ringEquivCongr_val
ZMod.ringEquivCongr_symm
RingEquiv.apply_symm_apply

modularCyclotomicCharacter'

Theorems

NameKindAssumesProvesValidatesDepends On
spec' πŸ“–mathematicalUnits
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Subgroup
CommMonoid.toMonoid
CommRing.toCommMonoid
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
Units.val
Monoid.toNatPow
ZMod.val
Fintype.card
rootsOfUnity.fintype
ZMod
ZMod.commRing
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
RingAut.instGroup
Units.instMulOneClass
MonoidHom.instFunLike
modularCyclotomicCharacter'
β€”modularCyclotomicCharacter.toFun_spec'
unique' πŸ“–mathematicalDFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
Units.val
CommMonoid.toMonoid
CommRing.toCommMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.val
Fintype.card
Units
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
rootsOfUnity.fintype
ZMod
ZMod.commRing
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
RingAut.instGroup
Units.instMulOneClass
MonoidHom.instFunLike
modularCyclotomicCharacter'
β€”modularCyclotomicCharacter.toFun_unique'

rootsOfUnity

Theorems

NameKindAssumesProvesValidatesDepends On
integer_power_of_ringEquiv πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
Units.val
CommMonoid.toMonoid
CommRing.toCommMonoid
Units
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
DivInvMonoid.toZPow
Units.instDivInvMonoid
β€”RingEquivClass.toMulEquivClass
RingEquiv.instRingEquivClass
MonoidHom.map_cyclic
isCyclic
Units.ext_iff
SetCoe.ext_iff
integer_power_of_ringEquiv' πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
Units.val
CommMonoid.toMonoid
CommRing.toCommMonoid
Units
DivInvMonoid.toZPow
Units.instDivInvMonoid
β€”integer_power_of_ringEquiv

---

← Back to Index