Documentation Verification Report

PrimitiveRoots

πŸ“ Source: Mathlib/NumberTheory/Cyclotomic/PrimitiveRoots.lean

Statistics

MetricCount
Definitionszeta, embeddingsEquivPrimitiveRoots, powerBasis, subOnePowerBasis
4
Theoremsaeval_zeta, finrank, norm_zeta_eq_one, norm_zeta_pow_sub_one_of_prime_ne_two, norm_zeta_pow_sub_one_of_prime_pow_ne_two, norm_zeta_pow_sub_one_two, norm_zeta_sub_one_of_isPrimePow, norm_zeta_sub_one_of_prime_ne_two, zeta_isRoot, zeta_pow, zeta_spec, dvd_of_isCyclotomicExtension, embeddingsEquivPrimitiveRoots_apply_coe, exists_neg_pow_of_isOfFinOrder, exists_pow_or_neg_mul_pow_of_isOfFinOrder, lcm_totient_le_finrank, minpoly_sub_one_eq_cyclotomic_comp, norm_eq_neg_one_pow, norm_eq_one, norm_eq_one_of_linearly_ordered, norm_of_cyclotomic_irreducible, norm_pow_sub_one_eq_prime_pow_of_ne_zero, norm_pow_sub_one_of_prime_ne_two, norm_pow_sub_one_of_prime_pow_ne_two, norm_pow_sub_one_two, norm_sub_one_of_prime_ne_two, norm_sub_one_of_prime_ne_two', norm_sub_one_two, powerBasis_dim, powerBasis_gen, powerBasis_gen_mem_adjoin_zeta_sub_one, subOnePowerBasis_dim, subOnePowerBasis_gen, sub_one_norm_eq_eval_cyclotomic, sub_one_norm_isPrimePow
35
Total39

IsCyclotomicExtension

Definitions

NameCategoryTheorems
zeta πŸ“–CompOp
13 mathmath: aeval_zeta, norm_zeta_pow_sub_one_of_prime_ne_two, zeta_pow, zeta_isRoot, norm_zeta_sub_one_of_prime_ne_two, norm_zeta_sub_one_of_isPrimePow, zeta_spec, norm_zeta_eq_one, norm_zeta_pow_sub_one_two, fromZetaAut_spec, autEquivPow_symm_apply, autEquivPow_apply, norm_zeta_pow_sub_one_of_prime_pow_ne_two

Theorems

NameKindAssumesProvesValidatesDepends On
aeval_zeta πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
zeta
Polynomial.cyclotomic
CommRing.toRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Polynomial.eval_map_algebraMap
Polynomial.IsRoot.def
Polynomial.map_cyclotomic
Polynomial.isRoot_cyclotomic_iff
zeta_spec
finrank πŸ“–mathematicalIrreducible
Polynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.cyclotomic
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Semifield.toCommSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Nat.totient
β€”zeta_spec
PowerBasis.finrank
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsPrimitiveRoot.powerBasis_dim
IsPrimitiveRoot.minpoly_eq_cyclotomic_of_irreducible
neZero'
Polynomial.natDegree_cyclotomic
norm_zeta_eq_one πŸ“–mathematicalIrreducible
Polynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.cyclotomic
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MonoidHom.instFunLike
Algebra.norm
zeta
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”IsPrimitiveRoot.norm_eq_one
zeta_spec
instIsDomain
norm_zeta_pow_sub_one_of_prime_ne_two πŸ“–mathematicalIrreducible
Polynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.cyclotomic
Monoid.toNatPow
Nat.instMonoid
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MonoidHom.instFunLike
Algebra.norm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
zeta
NeZero.of_gt'
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Nat.instPreorder
Nat.instCanonicallyOrderedAdd
Nat.instOne
Nat.Prime.one_lt'
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddMonoidWithOne.toNatCast
β€”IsPrimitiveRoot.norm_sub_one_of_prime_ne_two
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
zeta_spec
norm_zeta_pow_sub_one_of_prime_pow_ne_two πŸ“–mathematicalIrreducible
Polynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.cyclotomic
Monoid.toNatPow
Nat.instMonoid
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MonoidHom.instFunLike
Algebra.norm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
zeta
NeZero.of_gt'
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Nat.instPreorder
Nat.instCanonicallyOrderedAdd
Nat.instOne
Nat.Prime.one_lt'
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddMonoidWithOne.toNatCast
β€”IsPrimitiveRoot.norm_pow_sub_one_of_prime_pow_ne_two
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
zeta_spec
norm_zeta_pow_sub_one_two πŸ“–mathematicalIrreducible
Polynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.cyclotomic
Monoid.toNatPow
Nat.instMonoid
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MonoidHom.instFunLike
Algebra.norm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
zeta
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
β€”IsPrimitiveRoot.norm_sub_one_two
zeta_spec
norm_zeta_sub_one_of_isPrimePow πŸ“–mathematicalIsPrimePow
Nat.instCommMonoidWithZero
Irreducible
Polynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.cyclotomic
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MonoidHom.instFunLike
Algebra.norm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
zeta
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddMonoidWithOne.toNatCast
Nat.minFac
β€”IsPrimitiveRoot.sub_one_norm_isPrimePow
zeta_spec
norm_zeta_sub_one_of_prime_ne_two πŸ“–mathematicalIrreducible
Polynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.cyclotomic
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MonoidHom.instFunLike
Algebra.norm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
zeta
NeZero.of_gt'
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Nat.instPreorder
Nat.instCanonicallyOrderedAdd
Nat.instOne
Nat.Prime.one_lt'
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddMonoidWithOne.toNatCast
β€”IsPrimitiveRoot.norm_sub_one_of_prime_ne_two'
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
zeta_spec
zeta_isRoot πŸ“–mathematicalβ€”Polynomial.IsRoot
Ring.toSemiring
CommRing.toRing
Polynomial.cyclotomic
zeta
β€”Polynomial.IsRoot.def
Polynomial.aeval_def
Polynomial.evalβ‚‚_eq_eval_map
Polynomial.map_cyclotomic
aeval_zeta
zeta_pow πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
zeta
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”IsPrimitiveRoot.pow_eq_one
zeta_spec
zeta_spec πŸ“–mathematicalβ€”IsPrimitiveRoot
CommRing.toCommMonoid
zeta
β€”exists_isPrimitiveRoot
Set.mem_singleton

IsPrimitiveRoot

Definitions

NameCategoryTheorems
embeddingsEquivPrimitiveRoots πŸ“–CompOp
1 mathmath: embeddingsEquivPrimitiveRoots_apply_coe
powerBasis πŸ“–CompOp
10 mathmath: IsCyclotomicExtension.discr_prime_pow_eq_unit_mul_pow, IsCyclotomicExtension.discr_odd_prime, powerBasis_dim, powerBasis_gen_mem_adjoin_zeta_sub_one, powerBasis_gen, discr_zeta_eq_discr_zeta_sub_one, IsCyclotomicExtension.discr_prime_pow_ne_two, IsCyclotomicExtension.autEquivPow_symm_apply, IsCyclotomicExtension.discr_prime_pow, IsCyclotomicExtension.discr_prime_pow_ne_two'
subOnePowerBasis πŸ“–CompOp
7 mathmath: IsCyclotomicExtension.Rat.discr_prime_pow', discr_zeta_eq_discr_zeta_sub_one, IsCyclotomicExtension.Rat.discr_prime_pow_ne_two', subOnePowerBasis_dim, subOnePowerBasis_gen, IsCyclotomicExtension.Rat.discr_odd_prime', IsCyclotomicExtension.Rat.discr_prime_pow_eq_unit_mul_pow'

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_of_isCyclotomicExtension πŸ“–β€”IsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”β€”NumberField.to_charZero
IsCyclotomicExtension.zeta_spec
lcm_totient_le_finrank
instIsDomain
NumberField.to_finiteDimensional
Polynomial.cyclotomic.irreducible_rat
NeZero.pos
Nat.instCanonicallyOrderedAdd
dvd_lcm_right
Nat.totient_super_multiplicative
mul_le_iff_le_one_right
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.totient_pos
le_trans
IsCyclotomicExtension.finrank
MulZeroClass.mul_zero
Nat.dvd_prime
Nat.prime_two
Nat.dvd_two_of_totient_le_one
mul_one
dvd_mul_of_dvd_right
dvd_lcm_left
mul_comm
embeddingsEquivPrimitiveRoots_apply_coe πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Irreducible
Polynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.cyclotomic
Finset
SetLike.instMembership
Finset.instSetLike
primitiveRoots
DFunLike.coe
Equiv
AlgHom
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
CommRing.toCommSemiring
EquivLike.toFunLike
Equiv.instEquivLike
embeddingsEquivPrimitiveRoots
AlgHom.funLike
β€”β€”
exists_neg_pow_of_isOfFinOrder πŸ“–mathematicalOdd
Nat.instSemiring
IsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOfFinOrder
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Monoid.toNatPow
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
β€”NumberField.to_charZero
neg_eq_neg_one_mul
Commute.orderOf_mul_eq_mul_orderOf_of_coprime
Commute.all
orderOf_neg_one
IsLocalRing.toNontrivial
Field.instIsLocalRing
ringChar.eq_zero
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
eq_orderOf
orderOf
isOfFinOrder_iff_pow_eq_one
isRoot_of_unity_iff
instIsDomain
NeZero.natCast_ne
NeZero.charZero
dvd_of_isCyclotomicExtension
Polynomial.isRoot_cyclotomic_iff
pow_mul
pow_eq_one
one_pow
eq_pow_of_pow_eq_one
exists_pow_or_neg_mul_pow_of_isOfFinOrder πŸ“–mathematicalOdd
Nat.instSemiring
IsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsOfFinOrder
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Monoid.toNatPow
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
β€”NumberField.to_charZero
exists_neg_pow_of_isOfFinOrder
NeZero.pos
Nat.instCanonicallyOrderedAdd
pow_mod_orderOf
eq_orderOf
Nat.even_or_odd
neg_pow
Even.neg_one_pow
one_mul
Odd.neg_one_pow
neg_mul
lcm_totient_le_finrank πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Irreducible
Polynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.cyclotomic
Nat.totient
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Semifield.toCommSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”Nat.instCanonicallyOrderedAdd
pow_mul_pow_lcm
LT.lt.ne'
IsCyclotomicExtension.finrank
NeZero.pnat
Subalgebra.isDomain
adjoin_isCyclotomicExtension
Submodule.finrank_le
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
minpoly_sub_one_eq_cyclotomic_comp πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Irreducible
Polynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.cyclotomic
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Polynomial.comp
Polynomial.instAdd
Polynomial.X
Polynomial.instOne
β€”sub_eq_add_neg
map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
minpoly.add_algebraMap
minpoly_eq_cyclotomic_of_irreducible
IsCyclotomicExtension.neZero'
sub_neg_eq_add
norm_eq_neg_one_pow πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
CommRing.toRing
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MonoidHom.instFunLike
Algebra.norm
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Module.finrank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Semifield.toCommSemiring
β€”eq_neg_one_of_two_right
IsDomain.to_noZeroDivisors
map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
Algebra.norm_algebraMap
norm_eq_one πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Irreducible
Polynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.cyclotomic
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommRing.toRing
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MonoidHom.instFunLike
Algebra.norm
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”one_right_iff
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Algebra.norm_algebraMap
one_pow
Nat.two_le_iff
powerBasis_gen
Algebra.PowerBasis.norm_gen_eq_coeff_zero_minpoly
minpoly_eq_cyclotomic_of_irreducible
IsCyclotomicExtension.neZero'
Polynomial.cyclotomic_coeff_zero
mul_one
powerBasis_dim
Polynomial.natDegree_cyclotomic
IsLocalRing.toNontrivial
Field.instIsLocalRing
Even.neg_one_pow
Nat.totient_even
LE.le.lt_of_ne
norm_eq_one_of_linearly_ordered πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Odd
Nat.instSemiring
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
CommRing.toRing
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MonoidHom.instFunLike
Algebra.norm
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”iff_def
StrictMono.injective
Odd.strictMono_pow
AddGroup.existsAddOfLE
one_pow
map_pow
MonoidHom.instMonoidHomClass
Algebra.norm_algebraMap
RingHom.map_one
norm_of_cyclotomic_irreducible πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Irreducible
Polynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.cyclotomic
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommRing.toRing
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MonoidHom.instFunLike
Algebra.norm
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”norm_eq_neg_one_pow
IsCyclotomicExtension.finrank
Nat.cast_one
norm_eq_one
norm_pow_sub_one_eq_prime_pow_of_ne_zero πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Monoid.toNatPow
Nat.instMonoid
Irreducible
Polynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.cyclotomic
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidHom.instFunLike
Algebra.norm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddMonoidWithOne.toNatCast
β€”eq_of_prime_pow_eq
Nat.instIsCancelMulZero
Unique.instSubsingleton
Nat.prime_iff
Fact.out
Nat.prime_two
pow_one
Nat.pow_right_injective
Eq.le
le_antisymm
add_eq_right
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instAtLeastTwoHAddOfNat
norm_pow_sub_one_two
pow_succ'
pow_mul
neg_eq_neg_one_mul
mul_pow
neg_one_sq
one_mul
norm_pow_sub_one_of_prime_pow_ne_two
norm_pow_sub_one_of_prime_ne_two πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Monoid.toNatPow
Nat.instMonoid
Irreducible
Polynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.cyclotomic
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidHom.instFunLike
Algebra.norm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddMonoidWithOne.toNatCast
β€”norm_pow_sub_one_of_prime_pow_ne_two
eq_of_prime_pow_eq
Nat.instIsCancelMulZero
Unique.instSubsingleton
Nat.prime_iff
Fact.out
Nat.prime_two
pow_one
norm_pow_sub_one_of_prime_pow_ne_two πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Monoid.toNatPow
Nat.instMonoid
Irreducible
Polynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.cyclotomic
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidHom.instFunLike
Algebra.norm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddMonoidWithOne.toNatCast
β€”Polynomial.cyclotomic_irreducible_pow_of_irreducible_pow
Fact.out
instIsDomain
sub_add_cancel
pow
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
pow_add
add_comm
le_trans
IsScalarTower.left
le_antisymm
IntermediateField.adjoin_simple_le_iff
add_sub_cancel_right
sub_mem
SubringClass.addSubgroupClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IntermediateField.mem_adjoin_simple_self
OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
SubringClass.toSubsemiringClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SubsemiringClass.toAddSubmonoidClass
IntermediateField.adjoin_simple_toSubalgebra_of_isAlgebraic
IsIntegral.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
Algebra.IsIntegral.isIntegral
IsCyclotomicExtension.integral
IsCyclotomicExtension.equiv
adjoin_isCyclotomicExtension
SubsemiringClass.toSubmonoidClass
coe_submonoidClass_iff
IsCyclotomicExtension.finiteDimensional
Finite.of_fintype
IsCyclotomicExtension.isGalois
Algebra.norm_eq_norm_adjoin
sub_one_norm_isPrimePow
IsPrimePow.pow
Nat.Prime.isPrimePow
Nat.pow_minFac
Nat.Prime.minFac_eq
Module.finrank_mul_finrank
IntermediateField.isScalarTower_mid'
commRing_strongRankCondition
SubsemiringClass.nontrivial
Module.free_of_finite_type_torsion_free'
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
IntermediateField.finiteDimensional_left
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
IntermediateField.finiteDimensional_right
mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
Nat.instIsCancelMulZero
LT.lt.ne'
tsub_pos_iff_lt
Nat.instOrderedSub
Nat.Prime.one_lt
mul_comm
mul_assoc
Nat.totient_prime_pow
IsCyclotomicExtension.finrank
tsub_zero
pow_ne_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
Nat.Prime.ne_zero
norm_pow_sub_one_two πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Monoid.toNatPow
Nat.instMonoid
Irreducible
Polynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.cyclotomic
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidHom.instFunLike
Algebra.norm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
β€”pow_of_dvd
two_ne_zero
eq_zero_of_pow_eq_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
pow_dvd_pow
Nat.instAtLeastTwoHAddOfNat
map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_ofNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.instAtLeastTwo
eq_neg_one_of_two_right
IsDomain.to_noZeroDivisors
instIsDomain
pow_one
le_refl
zero_lt_two
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Algebra.norm_algebraMap
IsCyclotomicExtension.finrank
Nat.totient_prime_pow
Nat.prime_two
tsub_zero
Nat.instOrderedSub
mul_one
norm_sub_one_of_prime_ne_two πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Monoid.toNatPow
Nat.instMonoid
Irreducible
Polynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.cyclotomic
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidHom.instFunLike
Algebra.norm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddMonoidWithOne.toNatCast
β€”pow_zero
pow_one
norm_pow_sub_one_of_prime_ne_two
norm_sub_one_of_prime_ne_two' πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Irreducible
Polynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.cyclotomic
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidHom.instFunLike
Algebra.norm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddMonoidWithOne.toNatCast
β€”zero_add
pow_one
norm_sub_one_of_prime_ne_two
norm_sub_one_two πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Monoid.toNatPow
Nat.instMonoid
Irreducible
Polynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.cyclotomic
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidHom.instFunLike
Algebra.norm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
β€”pow_one
one_lt_two
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
lt_of_lt_of_le
Nat.instAtLeastTwoHAddOfNat
LT.lt.ne
zero_lt_two
Polynomial.eval_one_cyclotomic_prime_pow
Nat.fact_prime_two
Int.cast_ofNat
sub_one_norm_eq_eval_cyclotomic
powerBasis_dim πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
PowerBasis.dim
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
powerBasis
Polynomial.natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
minpoly
β€”β€”
powerBasis_gen πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
PowerBasis.gen
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
powerBasis
β€”β€”
powerBasis_gen_mem_adjoin_zeta_sub_one πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set
Set.instSingletonSet
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
PowerBasis.gen
EuclideanDomain.toCommRing
Field.toEuclideanDomain
powerBasis
β€”powerBasis_gen
Algebra.adjoin_singleton_eq_range_aeval
AlgHom.mem_range
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Polynomial.aeval_X
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
sub_add_cancel
subOnePowerBasis_dim πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
PowerBasis.dim
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
subOnePowerBasis
Polynomial.natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
minpoly
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”β€”
subOnePowerBasis_gen πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
PowerBasis.gen
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
subOnePowerBasis
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”β€”
sub_one_norm_eq_eval_cyclotomic πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Irreducible
Polynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.cyclotomic
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidHom.instFunLike
Algebra.norm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddGroupWithOne.toIntCast
Polynomial.eval
Int.instRing
β€”IsAlgClosed.exists_root
AlgebraicClosure.isAlgClosed
LT.lt.ne
Polynomial.degree_cyclotomic_pos
NeZero.pos
Nat.instCanonicallyOrderedAdd
IsLocalRing.toNontrivial
Field.instIsLocalRing
RingHom.injective
DivisionRing.isSimpleRing
instIsDomain
IsCyclotomicExtension.finiteDimensional
Finite.of_fintype
Algebra.norm_eq_prod_embeddings
IsGalois.to_isSeparable
IsCyclotomicExtension.isGalois
neg_sub
map_neg
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_sub
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
neg_eq_neg_one_mul
Finset.prod_mul_distrib
Finset.prod_const
Finset.card_univ
AlgHom.card
IsCyclotomicExtension.finrank
Even.neg_one_pow
Nat.totient_even
one_mul
Polynomial.cyclotomic'.eq_1
Polynomial.eval_prod
Finset.prod_attach
Finset.univ_eq_attach
Fintype.prod_equiv
Polynomial.eval_sub
Polynomial.eval_X
Polynomial.eval_C
NeZero.of_faithfulSMul
IsScalarTower.right
instFaithfulSMul_1
IsCyclotomicExtension.neZero'
Polynomial.cyclotomic_eq_prod_X_sub_primitiveRoots
Polynomial.isRoot_cyclotomic_iff
Polynomial.map_cyclotomic_int
map_intCast
RingHom.instRingHomClass
Int.cast_one
Polynomial.eval_intCast_map
eq_intCast
sub_one_norm_isPrimePow πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsPrimePow
Nat.instCommMonoidWithZero
Irreducible
Polynomial
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.cyclotomic
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidHom.instFunLike
Algebra.norm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddMonoidWithOne.toNatCast
Nat.minFac
β€”lt_of_le_of_ne
IsPrimePow.one_lt
Nat.minFac_prime
IsPrimePow.ne_one
sub_one_norm_eq_eval_cyclotomic
IsPrimePow.minFac_pow_factorization_eq
Finsupp.mem_support_toFun
Nat.mem_primeFactors_iff_mem_primeFactorsList
Nat.mem_primeFactorsList
IsPrimePow.ne_zero
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
Fact.out
Nat.minFac_dvd
Polynomial.eval_one_cyclotomic_prime_pow
Int.cast_natCast

---

← Back to Index