π Source: Mathlib/NumberTheory/Cyclotomic/PrimitiveRoots.lean
zeta
embeddingsEquivPrimitiveRoots
powerBasis
subOnePowerBasis
aeval_zeta
finrank
norm_zeta_eq_one
norm_zeta_pow_sub_one_of_prime_ne_two
norm_zeta_pow_sub_one_of_prime_pow_ne_two
norm_zeta_pow_sub_one_two
norm_zeta_sub_one_of_isPrimePow
norm_zeta_sub_one_of_prime_ne_two
zeta_isRoot
zeta_pow
zeta_spec
dvd_of_isCyclotomicExtension
embeddingsEquivPrimitiveRoots_apply_coe
exists_neg_pow_of_isOfFinOrder
exists_pow_or_neg_mul_pow_of_isOfFinOrder
lcm_totient_le_finrank
minpoly_sub_one_eq_cyclotomic_comp
norm_eq_neg_one_pow
norm_eq_one
norm_eq_one_of_linearly_ordered
norm_of_cyclotomic_irreducible
norm_pow_sub_one_eq_prime_pow_of_ne_zero
norm_pow_sub_one_of_prime_ne_two
norm_pow_sub_one_of_prime_pow_ne_two
norm_pow_sub_one_two
norm_sub_one_of_prime_ne_two
norm_sub_one_of_prime_ne_two'
norm_sub_one_two
powerBasis_dim
powerBasis_gen
powerBasis_gen_mem_adjoin_zeta_sub_one
subOnePowerBasis_dim
subOnePowerBasis_gen
sub_one_norm_eq_eval_cyclotomic
sub_one_norm_isPrimePow
fromZetaAut_spec
autEquivPow_symm_apply
autEquivPow_apply
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
Polynomial.cyclotomic
CommRing.toRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Polynomial.eval_map_algebraMap
Polynomial.IsRoot.def
Polynomial.map_cyclotomic
Polynomial.isRoot_cyclotomic_iff
Irreducible
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
Algebra.toModule
Semifield.toCommSemiring
Nat.totient
PowerBasis.finrank
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsPrimitiveRoot.powerBasis_dim
IsPrimitiveRoot.minpoly_eq_cyclotomic_of_irreducible
neZero'
Polynomial.natDegree_cyclotomic
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MonoidHom.instFunLike
Algebra.norm
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
IsPrimitiveRoot.norm_eq_one
instIsDomain
Monoid.toNatPow
Nat.instMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
NeZero.of_gt'
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Nat.instPreorder
Nat.instCanonicallyOrderedAdd
Nat.instOne
Nat.Prime.one_lt'
AddMonoidWithOne.toNatCast
IsPrimitiveRoot.norm_sub_one_of_prime_ne_two
IsPrimitiveRoot.norm_pow_sub_one_of_prime_pow_ne_two
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
IsPrimitiveRoot.norm_sub_one_two
IsPrimePow
Nat.instCommMonoidWithZero
Nat.minFac
IsPrimitiveRoot.sub_one_norm_isPrimePow
IsPrimitiveRoot.norm_sub_one_of_prime_ne_two'
Polynomial.IsRoot
Polynomial.aeval_def
Polynomial.evalβ_eq_eval_map
IsPrimitiveRoot.pow_eq_one
IsPrimitiveRoot
CommRing.toCommMonoid
exists_isPrimitiveRoot
Set.mem_singleton
IsCyclotomicExtension.discr_prime_pow_eq_unit_mul_pow
IsCyclotomicExtension.discr_odd_prime
discr_zeta_eq_discr_zeta_sub_one
IsCyclotomicExtension.discr_prime_pow_ne_two
IsCyclotomicExtension.autEquivPow_symm_apply
IsCyclotomicExtension.discr_prime_pow
IsCyclotomicExtension.discr_prime_pow_ne_two'
IsCyclotomicExtension.Rat.discr_prime_pow'
IsCyclotomicExtension.Rat.discr_prime_pow_ne_two'
IsCyclotomicExtension.Rat.discr_odd_prime'
IsCyclotomicExtension.Rat.discr_prime_pow_eq_unit_mul_pow'
NumberField.to_charZero
IsCyclotomicExtension.zeta_spec
NumberField.to_finiteDimensional
Polynomial.cyclotomic.irreducible_rat
NeZero.pos
dvd_lcm_right
Nat.totient_super_multiplicative
mul_le_iff_le_one_right
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.totient_pos
le_trans
IsCyclotomicExtension.finrank
MulZeroClass.mul_zero
Nat.dvd_prime
Nat.prime_two
Nat.dvd_two_of_totient_le_one
mul_one
dvd_mul_of_dvd_right
dvd_lcm_left
mul_comm
Finset
SetLike.instMembership
Finset.instSetLike
primitiveRoots
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Odd
Nat.instSemiring
IsOfFinOrder
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
neg_eq_neg_one_mul
Commute.orderOf_mul_eq_mul_orderOf_of_coprime
Commute.all
orderOf_neg_one
ringChar.eq_zero
Nat.instCharZero
eq_orderOf
orderOf
isOfFinOrder_iff_pow_eq_one
isRoot_of_unity_iff
NeZero.natCast_ne
NeZero.charZero
pow_mul
pow_eq_one
one_pow
eq_pow_of_pow_eq_one
pow_mod_orderOf
Nat.even_or_odd
neg_pow
Even.neg_one_pow
one_mul
Odd.neg_one_pow
neg_mul
pow_mul_pow_lcm
LT.lt.ne'
NeZero.pnat
Subalgebra.isDomain
adjoin_isCyclotomicExtension
Submodule.finrank_le
minpoly
Polynomial.comp
Polynomial.instAdd
Polynomial.X
Polynomial.instOne
sub_eq_add_neg
map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
minpoly.add_algebraMap
minpoly_eq_cyclotomic_of_irreducible
IsCyclotomicExtension.neZero'
sub_neg_eq_add
eq_neg_one_of_two_right
IsDomain.to_noZeroDivisors
Algebra.norm_algebraMap
one_right_iff
Nat.two_le_iff
Algebra.PowerBasis.norm_gen_eq_coeff_zero_minpoly
Polynomial.cyclotomic_coeff_zero
Nat.totient_even
LE.le.lt_of_ne
iff_def
StrictMono.injective
Odd.strictMono_pow
AddGroup.existsAddOfLE
map_pow
MonoidHom.instMonoidHomClass
RingHom.map_one
Nat.cast_one
eq_of_prime_pow_eq
Nat.instIsCancelMulZero
Unique.instSubsingleton
Nat.prime_iff
Fact.out
pow_one
Nat.pow_right_injective
Eq.le
le_antisymm
add_eq_right
AddRightCancelSemigroup.toIsRightCancelAdd
pow_succ'
mul_pow
neg_one_sq
Polynomial.cyclotomic_irreducible_pow_of_irreducible_pow
sub_add_cancel
pow
pow_add
add_comm
IsScalarTower.left
IntermediateField.adjoin_simple_le_iff
add_sub_cancel_right
sub_mem
SubringClass.addSubgroupClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IntermediateField.mem_adjoin_simple_self
OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
SubringClass.toSubsemiringClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SubsemiringClass.toAddSubmonoidClass
IntermediateField.adjoin_simple_toSubalgebra_of_isAlgebraic
IsIntegral.isAlgebraic
Algebra.IsIntegral.isIntegral
IsCyclotomicExtension.integral
IsCyclotomicExtension.equiv
SubsemiringClass.toSubmonoidClass
coe_submonoidClass_iff
IsCyclotomicExtension.finiteDimensional
Finite.of_fintype
IsCyclotomicExtension.isGalois
Algebra.norm_eq_norm_adjoin
IsPrimePow.pow
Nat.Prime.isPrimePow
Nat.pow_minFac
Nat.Prime.minFac_eq
Module.finrank_mul_finrank
IntermediateField.isScalarTower_mid'
SubsemiringClass.nontrivial
Module.free_of_finite_type_torsion_free'
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
IntermediateField.finiteDimensional_left
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
IntermediateField.finiteDimensional_right
mul_left_cancelβ
IsCancelMulZero.toIsLeftCancelMulZero
tsub_pos_iff_lt
Nat.instOrderedSub
Nat.Prime.one_lt
mul_assoc
Nat.totient_prime_pow
tsub_zero
pow_ne_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
Nat.Prime.ne_zero
pow_of_dvd
two_ne_zero
eq_zero_of_pow_eq_zero
pow_dvd_pow
map_ofNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.instAtLeastTwo
le_refl
zero_lt_two
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
pow_zero
zero_add
one_lt_two
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
lt_of_lt_of_le
LT.lt.ne
Polynomial.eval_one_cyclotomic_prime_pow
Nat.fact_prime_two
Int.cast_ofNat
PowerBasis.dim
Polynomial.natDegree
PowerBasis.gen
Subalgebra
Subalgebra.instSetLike
Algebra.adjoin
Set
Set.instSingletonSet
Algebra.adjoin_singleton_eq_range_aeval
AlgHom.mem_range
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Polynomial.aeval_X
AlgHomClass.toRingHomClass
AddGroupWithOne.toIntCast
Polynomial.eval
Int.instRing
IsAlgClosed.exists_root
AlgebraicClosure.isAlgClosed
Polynomial.degree_cyclotomic_pos
RingHom.injective
DivisionRing.isSimpleRing
Algebra.norm_eq_prod_embeddings
IsGalois.to_isSeparable
neg_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
map_sub
Finset.prod_mul_distrib
Finset.prod_const
Finset.card_univ
AlgHom.card
Polynomial.cyclotomic'.eq_1
Polynomial.eval_prod
Finset.prod_attach
Finset.univ_eq_attach
Fintype.prod_equiv
Polynomial.eval_sub
Polynomial.eval_X
Polynomial.eval_C
NeZero.of_faithfulSMul
IsScalarTower.right
instFaithfulSMul_1
Polynomial.cyclotomic_eq_prod_X_sub_primitiveRoots
Polynomial.map_cyclotomic_int
map_intCast
Int.cast_one
Polynomial.eval_intCast_map
eq_intCast
lt_of_le_of_ne
IsPrimePow.one_lt
Nat.minFac_prime
IsPrimePow.ne_one
IsPrimePow.minFac_pow_factorization_eq
Finsupp.mem_support_toFun
Nat.mem_primeFactors_iff_mem_primeFactorsList
Nat.mem_primeFactorsList
IsPrimePow.ne_zero
Nat.minFac_dvd
Int.cast_natCast
---
β Back to Index