Documentation Verification Report

Dioph

📁 Source: Mathlib/NumberTheory/Dioph.lean

Statistics

MetricCount
DefinitionsDioph, DiophFn, DiophPFun, «term&_», «termD&_», , «termD∃», «termD≡», «term_D%_», «term_D*_», «term_D+_», «term_D-_», «term_D/_», «term_D<_», «term_D=_», «term_D∣_», «term_D∧_», «term_D∨_», «term_D≠_», «term_D≤_», Poly, const, instAdd, instAddCommGroup, instAddGroupWithOne, instCommRing, instFunLike, instInhabited, instMul, instNeg, instOne, instSub, instZero, map, proj, sumsq
36
Theoremsforall, abs_poly_dioph, add_dioph, const_dioph, diophFn_comp, diophFn_comp1, diophFn_comp2, diophFn_compn, diophFn_iff_pFun, diophFn_vec, diophFn_vec_comp1, diophPFun_comp1, diophPFun_vec, dioph_comp, dioph_comp2, div_dioph, dom_dioph, dvd_dioph, eq_dioph, ex1_dioph, ex_dioph, ext, inject_dummies, inject_dummies_lem, inter, le_dioph, lt_dioph, modEq_dioph, mod_dioph, mul_dioph, ne_dioph, of_no_dummies, pell_dioph, pow_dioph, proj_dioph, proj_dioph_of_nat, reindex_dioph, reindex_diophFn, sub_dioph, union, vec_ex1_dioph, xn_dioph, add, neg, add_apply, coe_add, coe_mul, coe_neg, coe_one, coe_sub, coe_zero, const_apply, ext, ext_iff, induction, isPoly, map_apply, mul_apply, neg_apply, one_apply, proj_apply, sub_apply, sumsq_eq_zero, sumsq_nonneg, zero_apply
65
Total101

Dioph

Definitions

NameCategoryTheorems
DiophFn 📖MathDef
6 mathmath: diophFn_vec, const_dioph, proj_dioph, diophFn_iff_pFun, proj_dioph_of_nat, abs_poly_dioph
DiophPFun 📖MathDef
3 mathmath: xn_dioph, diophPFun_vec, diophFn_iff_pFun
«term&_» 📖CompOp
«termD&_» 📖CompOp
«termD._» 📖CompOp
«termD∃» 📖CompOp
«termD≡» 📖CompOp
«term_D%_» 📖CompOp
«term_D*_» 📖CompOp
«term_D+_» 📖CompOp
«term_D-_» 📖CompOp
«term_D/_» 📖CompOp
«term_D<_» 📖CompOp
«term_D=_» 📖CompOp
«term_D∣_» 📖CompOp
«term_D∧_» 📖CompOp
«term_D∨_» 📖CompOp
«term_D≠_» 📖CompOp
«term_D≤_» 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
abs_poly_dioph 📖mathematicalDiophFn
DFunLike.coe
Poly
Poly.instFunLike
of_no_dummies
add_dioph 📖DiophFndiophFn_comp2
abs_poly_dioph
Fin2.IsLT.zero
Fin2.IsLT.succ
const_dioph 📖mathematicalDiophFnabs_poly_dioph
diophFn_comp 📖DiophFn
Fin2
VectorAllP
dioph_comp
diophFn_vec
proj_dioph
vectorAllP_iff_forall
reindex_diophFn
diophFn_comp1 📖mathematicalDioph
DiophFn
setOf
Set
Set.instMembership
Option.elim'
ext
diophPFun_comp1
diophFn_iff_pFun
diophFn_comp2 📖DiophFn
Fin2
Fin2.ofNat'
Fin2.IsLT.zero
Fin2.IsLT.succ
Fin2.IsLT.zero
Fin2.IsLT.succ
diophFn_comp
diophFn_compn 📖mathematicalDioph
Fin2
VectorAllP
DiophFn
setOf
Set
Set.instMembership
ext
reindex_dioph
diophFn_comp1
reindex_diophFn
diophFn_iff_pFun 📖mathematicalDiophFn
DiophPFun
PFun.lift
Set.ext
PFun.lift_graph
diophFn_vec 📖mathematicalDiophFn
Fin2
Dioph
setOf
Fin2.fs
Fin2.fz
reindex_dioph
diophFn_vec_comp1 📖mathematicalDioph
Fin2
DiophFn
setOf
Vector3
Set
Set.instMembership
Vector3.cons
ext
diophFn_comp1
reindex_dioph
diophPFun_comp1 📖mathematicalDioph
DiophPFun
setOf
PFun.Dom
Set
Set.instMembership
Option.elim'
PFun.fn
ext
ex1_dioph
inter
PFun.fn.eq_1
diophPFun_vec 📖mathematicalDiophPFun
Fin2
Dioph
setOf
PFun.graph
Vector3
Fin2.fs
Fin2.fz
reindex_dioph
dioph_comp 📖mathematicalDioph
Fin2
VectorAllP
DiophFn
setOf
Set
Vector3
Set.instMembership
diophFn_compn
reindex_dioph
dioph_comp2 📖DiophFn
Dioph
Fin2
Fin2.ofNat'
Fin2.IsLT.zero
Fin2.IsLT.succ
Fin2.IsLT.zero
Fin2.IsLT.succ
dioph_comp
div_dioph 📖DiophFnFin2.IsLT.succ
Fin2.IsLT.zero
union
inter
eq_dioph
proj_dioph_of_nat
const_dioph
le_dioph
mul_dioph
lt_dioph
add_dioph
diophFn_comp2
diophFn_vec
ext
vectorAll_iff_forall
le_antisymm_iff
dom_dioph 📖mathematicalDiophPFunDioph
PFun.Dom
Set.ext
PFun.dom_iff_graph
ex1_dioph
dvd_dioph 📖mathematicalDiophFnDiophdioph_comp
Fin2.IsLT.succ
Fin2.IsLT.zero
vec_ex1_dioph
eq_dioph
proj_dioph_of_nat
mul_dioph
eq_dioph 📖mathematicalDiophFnDiophdioph_comp2
of_no_dummies
Fin2.IsLT.zero
Fin2.IsLT.succ
sub_eq_zero_of_eq
eq_of_sub_eq_zero
ex1_dioph 📖mathematicalDiophsetOf
Set
Set.instMembership
Option.elim'
ex_dioph 📖mathematicalDiophsetOf
Set
Set.instMembership
ext 📖Dioph
Set
Set.instMembership
Set.ext
inject_dummies 📖DFunLike.coe
Poly
Poly.instFunLike
inject_dummies_lem
inject_dummies_lem 📖mathematicalDFunLike.coe
Poly
Poly.instFunLike
Poly.map
inter 📖mathematicalDiophSet
Set.instInter
DiophList.forall
le_dioph 📖mathematicalDiophFnDioph
setOf
dioph_comp2
ext
Fin2.IsLT.succ
Fin2.IsLT.zero
vec_ex1_dioph
eq_dioph
add_dioph
proj_dioph_of_nat
lt_dioph 📖mathematicalDiophFnDioph
setOf
le_dioph
add_dioph
const_dioph
modEq_dioph 📖mathematicalDiophFnDioph
Nat.ModEq
eq_dioph
mod_dioph
mod_dioph 📖DiophFnFin2.IsLT.succ
Fin2.IsLT.zero
inter
union
eq_dioph
proj_dioph_of_nat
const_dioph
lt_dioph
vec_ex1_dioph
add_dioph
mul_dioph
diophFn_comp2
diophFn_vec
ext
vectorAll_iff_forall
mul_dioph 📖DiophFndiophFn_comp2
abs_poly_dioph
Fin2.IsLT.zero
Fin2.IsLT.succ
ne_dioph 📖mathematicalDiophFnDioph
setOf
ext
union
lt_dioph
lt_or_lt_iff_ne
of_no_dummies 📖mathematicalDFunLike.coe
Poly
Poly.instFunLike
Dioph
pell_dioph 📖mathematicalDioph
Fin2
Fin2.ofNat'
Fin2.IsLT.zero
Pell.xn
Fin2.IsLT.succ
Pell.yn
Fin2.IsLT.zero
Fin2.IsLT.succ
inter
lt_dioph
const_dioph
proj_dioph_of_nat
le_dioph
union
eq_dioph
vec_ex1_dioph
sub_dioph
mul_dioph
modEq_dioph
dvd_dioph
ext
Pell.matiyasevic
pow_dioph 📖mathematicalDiophFnMonoid.toNatPow
Nat.instMonoid
Fin2.IsLT.succ
Fin2.IsLT.zero
union
inter
eq_dioph
proj_dioph_of_nat
const_dioph
lt_dioph
vec_ex1_dioph
reindex_dioph
pell_dioph
modEq_dioph
add_dioph
mul_dioph
sub_dioph
le_dioph
diophFn_comp2
diophFn_vec
ext
Pell.eq_pow_of_pell
proj_dioph 📖mathematicalDiophFnabs_poly_dioph
proj_dioph_of_nat 📖mathematicalDiophFn
Fin2
Fin2.ofNat'
proj_dioph
reindex_dioph 📖mathematicalDiophsetOf
Set
Set.instMembership
reindex_diophFn 📖DiophFnreindex_dioph
sub_dioph 📖DiophFndiophFn_comp2
Fin2.IsLT.zero
Fin2.IsLT.succ
diophFn_vec
ext
union
eq_dioph
proj_dioph_of_nat
add_dioph
inter
le_dioph
const_dioph
vectorAll_iff_forall
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
tsub_eq_zero_iff_le
Nat.instCanonicallyOrderedAdd
union 📖mathematicalDiophSet
Set.instUnion
inject_dummies_lem
mul_eq_zero
IsStrictOrderedRing.noZeroDivisors
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
vec_ex1_dioph 📖mathematicalDioph
Fin2
setOf
Vector3
Set
Set.instMembership
Vector3.cons
ext
ex1_dioph
reindex_dioph
xn_dioph 📖mathematicalDiophPFun
Fin2
Fin2.ofNat'
Fin2.IsLT.zero
Pell.xn
Fin2.IsLT.succ
Fin2.IsLT.succ
Fin2.IsLT.zero
reindex_dioph
pell_dioph
vec_ex1_dioph
diophPFun_vec
ext

Dioph.DiophList

Theorems

NameKindAssumesProvesValidatesDepends On
forall 📖mathematicalList.Forall
Set
Dioph
setOf
Set.instMembership
List.forall_cons
List.Forall.imp
Poly.sumsq_eq_zero

IsPoly

Theorems

NameKindAssumesProvesValidatesDepends On
add 📖mathematicalIsPolyPi.instAddsub_neg_eq_add
neg
neg 📖mathematicalIsPolyPi.instNegzero_sub

Poly

Definitions

NameCategoryTheorems
const 📖CompOp
3 mathmath: const_apply, coe_zero, coe_one
instAdd 📖CompOp
2 mathmath: coe_add, add_apply
instAddCommGroup 📖CompOp
instAddGroupWithOne 📖CompOp
instCommRing 📖CompOp
instFunLike 📖CompOp
21 mathmath: const_apply, coe_zero, neg_apply, Dioph.inject_dummies_lem, proj_apply, sumsq_nonneg, ext_iff, isPoly, coe_mul, coe_sub, coe_add, one_apply, sumsq_eq_zero, add_apply, coe_one, zero_apply, map_apply, coe_neg, Dioph.abs_poly_dioph, mul_apply, sub_apply
instInhabited 📖CompOp
instMul 📖CompOp
2 mathmath: coe_mul, mul_apply
instNeg 📖CompOp
2 mathmath: neg_apply, coe_neg
instOne 📖CompOp
2 mathmath: one_apply, coe_one
instSub 📖CompOp
2 mathmath: coe_sub, sub_apply
instZero 📖CompOp
2 mathmath: coe_zero, zero_apply
map 📖CompOp
2 mathmath: Dioph.inject_dummies_lem, map_apply
proj 📖CompOp
1 mathmath: proj_apply
sumsq 📖CompOp
2 mathmath: sumsq_nonneg, sumsq_eq_zero

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply 📖mathematicalDFunLike.coe
Poly
instFunLike
instAdd
coe_add 📖mathematicalDFunLike.coe
Poly
instFunLike
instAdd
Pi.instAdd
coe_mul 📖mathematicalDFunLike.coe
Poly
instFunLike
instMul
Pi.instMul
coe_neg 📖mathematicalDFunLike.coe
Poly
instFunLike
instNeg
Pi.instNeg
coe_one 📖mathematicalDFunLike.coe
Poly
instFunLike
instOne
const
coe_sub 📖mathematicalDFunLike.coe
Poly
instFunLike
instSub
Pi.instSub
coe_zero 📖mathematicalDFunLike.coe
Poly
instFunLike
instZero
const
const_apply 📖mathematicalDFunLike.coe
Poly
instFunLike
const
ext 📖DFunLike.coe
Poly
instFunLike
DFunLike.ext
ext_iff 📖mathematicalDFunLike.coe
Poly
instFunLike
ext
induction 📖proj
const
Poly
instSub
instMul
isPoly 📖mathematicalIsPoly
DFunLike.coe
Poly
instFunLike
map_apply 📖mathematicalDFunLike.coe
Poly
instFunLike
map
mul_apply 📖mathematicalDFunLike.coe
Poly
instFunLike
instMul
neg_apply 📖mathematicalDFunLike.coe
Poly
instFunLike
instNeg
one_apply 📖mathematicalDFunLike.coe
Poly
instFunLike
instOne
proj_apply 📖mathematicalDFunLike.coe
Poly
instFunLike
proj
sub_apply 📖mathematicalDFunLike.coe
Poly
instFunLike
instSub
sumsq_eq_zero 📖mathematicalDFunLike.coe
Poly
instFunLike
sumsq
List.Forall
Int.instAddLeftMono
covariant_swap_add_of_covariant_add
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
IsStrictOrderedRing.noZeroDivisors
sumsq_nonneg 📖mathematicalDFunLike.coe
Poly
instFunLike
sumsq
le_refl
sumsq.eq_2
add_nonneg
Int.instAddLeftMono
mul_self_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
zero_apply 📖mathematicalDFunLike.coe
Poly
instFunLike
instZero

(root)

Definitions

NameCategoryTheorems
Dioph 📖MathDef
11 mathmath: Dioph.diophFn_vec, Dioph.le_dioph, Dioph.lt_dioph, Dioph.of_no_dummies, Dioph.modEq_dioph, Dioph.ne_dioph, Dioph.dom_dioph, Dioph.eq_dioph, Dioph.diophPFun_vec, Dioph.pell_dioph, Dioph.dvd_dioph
Poly 📖CompOp
21 mathmath: Poly.const_apply, Poly.coe_zero, Poly.neg_apply, Dioph.inject_dummies_lem, Poly.proj_apply, Poly.sumsq_nonneg, Poly.ext_iff, Poly.isPoly, Poly.coe_mul, Poly.coe_sub, Poly.coe_add, Poly.one_apply, Poly.sumsq_eq_zero, Poly.add_apply, Poly.coe_one, Poly.zero_apply, Poly.map_apply, Poly.coe_neg, Dioph.abs_poly_dioph, Poly.mul_apply, Poly.sub_apply

---

← Back to Index