Documentation Verification Report

Basic

📁 Source: Mathlib/NumberTheory/DiophantineApproximation/Basic.lean

Statistics

MetricCount
DefinitionsAss, convergent
2
Theoremsden_le_and_le_num_le_of_sub_lt_one_div_den_sq, finite_rat_abs_sub_lt_one_div_den_sq, convergent_of_int, convergent_of_zero, convergent_succ, convergent_zero, exists_int_int_abs_mul_sub_le, exists_nat_abs_mul_sub_round_le, exists_rat_abs_sub_le_and_den_le, exists_rat_abs_sub_lt_and_lt_of_irrational, exists_rat_eq_convergent, exists_rat_eq_convergent', infinite_rat_abs_sub_lt_one_div_den_sq_iff_irrational, infinite_rat_abs_sub_lt_one_div_den_sq_of_irrational
14
Total16

Rat

Theorems

NameKindAssumesProvesValidatesDepends On
den_le_and_le_num_le_of_sub_lt_one_div_den_sq 📖mathematicalabs
instLattice
addGroup
Monoid.toNatPow
monoid
Int.ceil
DivisionRing.toRing
instDivisionRing
linearOrder
instFloorRing
Int.floor
Nat.cast_pos
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
nontrivial
pos
mul_div_cancel_left₀
EuclideanDomain.toMulDivCancelClass
LT.lt.ne'
div_mul
sq
abs_of_pos
instAddLeftMono
abs_mul
sub_mul
mul_den_eq_num
mul_lt_mul_iff_left₀
IsStrictOrderedRing.toMulPosStrictMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
eq_or_ne
le_rfl
Nat.cast_le
instZeroLEOneClass
instCharZero
LT.lt.le
one_lt_div
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
lt_of_le_of_lt
Nat.cast_one
Int.cast_natCast
Int.cast_one
NeZero.charZero_one
mul_comm
Int.one_le_abs
sub_ne_zero_of_ne
eq_iff_mul_eq_mul
mul_one
div_mul_comm
div_lt_iff₀
abs_div
div_sub'
div_mul_eq_mul_div
num_div_den
abs_sub_lt_iff
instIsOrderedAddMonoid
LT.lt.trans_le
one_div_le
zero_lt_one
one_div_one
sub_le_iff_le_add
covariant_swap_add_of_covariant_add
Int.instAddLeftMono
Int.ceil_le
add_comm
sub_lt_iff_lt_add
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
Int.le_floor
finite_rat_abs_sub_lt_one_div_den_sq 📖mathematicalSet.Finite
setOf
abs
instLattice
addGroup
Monoid.toNatPow
monoid
num_div_den
den_le_and_le_num_le_of_sub_lt_one_div_den_sq
Set.mem_Ioc
pos
Set.prod_singleton
Set.Finite.of_finite_image
Set.Finite.subset
Set.Finite.biUnion
Set.finite_Ioc
Set.Finite.prod
Set.finite_Icc
Set.finite_singleton
Function.Injective.injOn

Real

Definitions

NameCategoryTheorems
convergent 📖CompOp
7 mathmath: convergent_succ, convergent_of_zero, convergent_zero, exists_rat_eq_convergent, convs_eq_convergent, convergent_of_int, exists_rat_eq_convergent'

Theorems

NameKindAssumesProvesValidatesDepends On
convergent_of_int 📖mathematicalconvergent
Real
instIntCast
Int.floor_intCast
instIsStrictOrderedRing
Int.fract_intCast
inv_zero
convergent_of_zero
add_zero
convergent_of_zero 📖mathematicalconvergent
Real
instZero
Int.floor_zero
instIsStrictOrderedRing
Int.cast_zero
Int.fract_zero
inv_zero
add_zero
convergent_succ 📖mathematicalconvergent
Int.floor
Real
instRing
linearOrder
instFloorRing
instInv
Int.fract
convergent_zero 📖mathematicalconvergent
Int.floor
Real
instRing
linearOrder
instFloorRing
exists_int_int_abs_mul_sub_le 📖mathematicalReal
instLE
abs
lattice
instAddGroup
instSub
instMul
instIntCast
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instAdd
instNatCast
Nat.cast_zero
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
mul_lt_of_lt_one_left
IsStrictOrderedRing.toMulPosStrictMono
Int.fract_lt_one
mul_comm
le_div_iff₀
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
abs_of_pos
abs_mul
instIsOrderedRing
Int.floor_le
Int.cast_zero
MulZeroClass.mul_zero
Int.fract_zero
MulZeroClass.zero_mul
Int.floor_zero
Ne.lt_of_le
LT.lt.ne
Int.instCharZero
Finset.mem_Icc
Int.cast_add
sub_sub
sub_mul
Int.cast_one
one_mul
abs_le
le_sub_iff_add_le
covariant_swap_add_of_covariant_add
neg_add_cancel_comm_assoc
sub_le_iff_le_add
le_of_lt
LT.lt.trans
lt_one_add
NeZero.charZero_one
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
Int.card_Icc
Int.card_Ico
lt_add_one
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Nat.instIsOrderedAddMonoid
Int.floor_lt
Int.cast_natCast
Finset.mem_Ico
Int.floor_nonneg
mul_nonneg
IsOrderedRing.toPosMulMono
Int.fract_nonneg
LT.lt.le
Mathlib.Tactic.Push.not_and_eq
Finset.exists_ne_map_eq_of_card_lt_of_maps_to
lt_trichotomy
sub_pos_of_lt
Int.instAddLeftMono
le_add_of_le_of_nonneg
Int.cast_sub
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_one
Int.abs_sub_lt_one_of_floor_eq_floor
exists_nat_abs_mul_sub_round_le 📖mathematicalReal
instLE
abs
lattice
instAddGroup
instSub
instMul
instNatCast
instIntCast
round
instRing
linearOrder
instFloorRing
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instAdd
exists_int_int_abs_mul_sub_le
LT.lt.le
Nat.cast_le
Int.instAddLeftMono
Int.instZeroLEOneClass
Int.instCharZero
LE.le.trans
round_le
instIsStrictOrderedRing
exists_rat_abs_sub_le_and_den_le 📖mathematicalReal
instLE
abs
lattice
instAddGroup
instSub
instRatCast
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instMul
instAdd
instNatCast
exists_int_int_abs_mul_sub_le
Int.cast_pos
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
Rat.intCast_div_eq_divInt
Rat.den_dvd
div_div
le_div_iff₀
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Nat.cast_pos
instIsOrderedRing
instNontrivial
Rat.pos
LE.le.trans
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Int.cast_le
abs_nonneg
covariant_swap_add_of_covariant_add
abs_of_pos
Rat.cast_div
Rat.cast_intCast
abs_mul
sub_mul
div_mul_cancel₀
LT.lt.ne'
mul_comm
Nat.cast_le
Int.instAddLeftMono
Int.instZeroLEOneClass
Int.instCharZero
exists_rat_abs_sub_lt_and_lt_of_irrational 📖mathematicalIrrationalReal
instLT
abs
lattice
instAddGroup
instSub
instRatCast
DivInvMonoid.toDiv
instDivInvMonoid
instOne
Monoid.toNatPow
instMonoid
instNatCast
abs_pos
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
sub_ne_zero
Irrational.ne_rat
exists_nat_gt
instIsStrictOrderedRing
instArchimedean
LT.lt.trans
one_div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
exists_rat_abs_sub_le_and_den_le
Nat.cast_pos
instIsOrderedRing
instNontrivial
Rat.pos
mul_pos
add_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
lt_of_le_of_lt
sq
one_div_lt_one_div
mul_lt_mul_iff_left₀
IsStrictOrderedRing.toMulPosStrictMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
lt_add_of_le_of_pos
Nat.cast_le
one_div_lt
lt_of_lt_of_le
lt_add_one
le_mul_iff_one_le_right
IsOrderedRing.toPosMulMono
Nat.cast_one
exists_rat_eq_convergent 📖mathematicalReal
instLT
abs
lattice
instAddGroup
instSub
instRatCast
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Monoid.toNatPow
instMonoid
convergentNat.instAtLeastTwoHAddOfNat
exists_rat_eq_convergent'
Int.isCoprime_iff_nat_coprime
Nat.cast_one
one_pow
mul_one
abs_lt
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Rat.den_eq_one_iff
Nat.cast_eq_one
Int.instCharZero
Nat.cast_pos
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
Int.instNontrivial
Rat.pos
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
zero_lt_two
instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Int.cast_natCast
Rat.instCharZero
Rat.num_div_den
LT.lt.trans
one_div
sq
one_div_lt_one_div
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
add_zero
exists_rat_eq_convergent' 📖mathematicalContfracLegendre.AssconvergentNat.strong_induction_on
lt_trichotomy
lt_irrefl
LE.le.trans_lt
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Nat.cast_zero
Int.cast_zero
div_zero
tsub_zero
AddGroup.toOrderedSub
MulZeroClass.zero_mul
inv_zero
Nat.cast_one
div_one
le_or_gt
convergent_zero
Int.floor_eq_iff
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_intCast
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.instAtLeastTwo
sub_lt_iff_lt_add'
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
abs_lt
lt_sub_iff_add_lt'
Int.cast_sub
Int.cast_one
sub_add_cancel
LT.lt.le
LT.lt.trans
Nat.instAtLeastTwoHAddOfNat
sub_lt_sub_iff_left
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
one_half_lt_one
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
eq_or_ne
sub_eq_add_neg
le_inv_comm₀
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
Int.fract_pos
inv_one
one_add_one_eq_two
inv_lt_comm₀
zero_lt_two
Int.fract_lt_one
Int.fract.eq_1
sub_add
Mathlib.Meta.NormNum.IsRat.neg_to_eq
Mathlib.Meta.NormNum.isRat_neg
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_sub
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Nat.cast_le
Int.instAddLeftMono
Int.instZeroLEOneClass
Int.instCharZero
LT.lt.ne'
Nat.cast_pos
IsStrictOrderedRing.toIsOrderedRing
Rat.instIsStrictOrderedRing
Rat.nontrivial
Nat.instZeroLEOneClass
convergent_succ
Int.cast_natCast
Rat.instCharZero
inv_div
sub_div
mul_div_cancel_right₀
EuclideanDomain.toMulDivCancelClass
add_sub_cancel
infinite_rat_abs_sub_lt_one_div_den_sq_iff_irrational 📖mathematicalSet.Infinite
setOf
Real
instLT
abs
lattice
instAddGroup
instSub
instRatCast
DivInvMonoid.toDiv
instDivInvMonoid
instOne
Monoid.toNatPow
instMonoid
instNatCast
Irrational
irrational_iff_ne_rational
Mathlib.Tactic.Contrapose.contrapose₃
Rat.cast_div
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
Rat.cast_one
Rat.cast_pow
Rat.cast_natCast
Nat.cast_one
Rat.instCharZero
Rat.finite_rat_abs_sub_lt_one_div_den_sq
infinite_rat_abs_sub_lt_one_div_den_sq_of_irrational
infinite_rat_abs_sub_lt_one_div_den_sq_of_irrational 📖mathematicalIrrationalSet.Infinite
setOf
Real
instLT
abs
lattice
instAddGroup
instSub
instRatCast
DivInvMonoid.toDiv
instDivInvMonoid
instOne
Monoid.toNatPow
instMonoid
instNatCast
Set.finite_or_infinite
Set.exists_min_image
one_div
Rat.cast_intCast
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instIsStrictOrderedRing
Nat.cast_one
one_pow
inv_one
exists_rat_abs_sub_lt_and_lt_of_irrational
lt_irrefl
lt_of_le_of_lt

Real.ContfracLegendre

Definitions

NameCategoryTheorems
Ass 📖MathDef

---

← Back to Index