Documentation Verification Report

Basic

πŸ“ Source: Mathlib/NumberTheory/DirichletCharacter/Basic.lean

Statistics

MetricCount
DefinitionsDirichletCharacter, Ο‡β‚€, IsPrimitive, changeLevel, conductor, conductorSet, instUniqueOfNatNat, mul, primitiveCharacter, primitive_mul
10
Theoremseval_neg, not_odd, toUnitHom_eval_neg_one, to_fun, dvd, eq_changeLevel, existsUnique, same_level, eval_neg, not_even, toUnitHom_eval_neg_one, to_fun, changeLevel_def, changeLevel_eq_cast_of_dvd, changeLevel_eq_one_iff, changeLevel_factorsThrough, changeLevel_injective, changeLevel_one, changeLevel_primitiveCharacter, changeLevel_self, changeLevel_self_toUnitHom, changeLevel_toUnitHom, changeLevel_trans, conductor_dvd_level, conductor_dvd_of_mem_conductorSet, conductor_eq_zero_iff_level_eq_zero, conductor_le_conductor_mem_conductorSet, conductor_mem_conductorSet, conductor_ne_zero, conductor_one, conductor_one_dvd, eq_one_iff_conductor_eq_one, eval_modulus_sub, even_or_odd, factorsThrough_conductor, factorsThrough_gcd, factorsThrough_iff_ker_unitsMap, factorsThrough_one_iff, instSubsingletonOfNatNat, isPrimitive_def, isPrimitive_one_level_one, isPrimitive_one_level_zero, level_mem_conductorSet, level_one, level_one', map_zero', mem_conductorSet_dvd, mem_conductorSet_iff, mul_def, not_even_and_odd, primitiveCharacter_isPrimitive, primitiveCharacter_one, primitive_mul_isPrimitive, toUnitHom_eq_char', toUnitHom_inj, zero_ne_mem_conductorSet
56
Total66

DirichletCharacter

Definitions

NameCategoryTheorems
IsPrimitive πŸ“–MathDef
5 mathmath: isPrimitive_def, primitiveCharacter_isPrimitive, primitive_mul_isPrimitive, isPrimitive_one_level_one, isPrimitive_one_level_zero
changeLevel πŸ“–CompOp
16 mathmath: changeLevel_injective, changeLevel_def, conductor_le_conductor_mem_conductorSet, changeLevel_trans, LFunction_changeLevel, LSeries_changeLevel, changeLevel_one, changeLevel_toUnitHom, changeLevel_factorsThrough, changeLevel_eq_one_iff, FactorsThrough.existsUnique, changeLevel_self_toUnitHom, changeLevel_primitiveCharacter, changeLevel_self, changeLevel_eq_cast_of_dvd, FactorsThrough.eq_changeLevel
conductor πŸ“–CompOp
14 mathmath: conductor_le_conductor_mem_conductorSet, isPrimitive_def, primitiveCharacter_one, conductor_dvd_level, conductor_one, primitiveCharacter_isPrimitive, conductor_mem_conductorSet, primitive_mul_isPrimitive, eq_one_iff_conductor_eq_one, conductor_eq_zero_iff_level_eq_zero, conductor_dvd_of_mem_conductorSet, factorsThrough_conductor, changeLevel_primitiveCharacter, conductor_one_dvd
conductorSet πŸ“–CompOp
4 mathmath: conductor_mem_conductorSet, level_mem_conductorSet, mem_conductorSet_iff, zero_ne_mem_conductorSet
instUniqueOfNatNat πŸ“–CompOpβ€”
mul πŸ“–CompOp
2 mathmath: primitive_mul_isPrimitive, mul_def
primitiveCharacter πŸ“–CompOp
4 mathmath: primitiveCharacter_one, primitiveCharacter_isPrimitive, mul_def, changeLevel_primitiveCharacter
primitive_mul πŸ“–CompOp
2 mathmath: primitive_mul_isPrimitive, mul_def

Theorems

NameKindAssumesProvesValidatesDepends On
changeLevel_def πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
DirichletCharacter
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
ZMod
CommRing.toCommMonoid
ZMod.commRing
MonoidHom.instFunLike
changeLevel
MulChar.ofUnitHom
MonoidHom.comp
Units
CommMonoid.toMonoid
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Units.instMulOneClass
MulChar.toUnitHom
ZMod.unitsMap
β€”β€”
changeLevel_eq_cast_of_dvd πŸ“–mathematicalβ€”DFunLike.coe
DirichletCharacter
ZMod
MulChar.instFunLike
CommRing.toCommMonoid
ZMod.commRing
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
MonoidHom.instFunLike
changeLevel
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.cast
Ring.toAddGroupWithOne
CommRing.toRing
β€”MulChar.equivToUnitHom_symm_coe
MulChar.coe_equivToUnitHom
changeLevel_eq_one_iff πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
DirichletCharacter
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
ZMod
CommRing.toCommMonoid
ZMod.commRing
MonoidHom.instFunLike
changeLevel
MulChar.hasOne
β€”map_eq_one_iff
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
changeLevel_injective
changeLevel_factorsThrough πŸ“–mathematicalβ€”FactorsThrough
DFunLike.coe
MonoidHom
DirichletCharacter
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
ZMod
CommRing.toCommMonoid
ZMod.commRing
MonoidHom.instFunLike
changeLevel
β€”β€”
changeLevel_injective πŸ“–mathematicalβ€”DirichletCharacter
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
ZMod
CommRing.toCommMonoid
ZMod.commRing
MonoidHom.instFunLike
changeLevel
β€”MulChar.ext
ZMod.unitsMap_surjective
MulChar.equivToUnitHom_symm_coe
MulChar.coe_equivToUnitHom
MulChar.ext_iff
changeLevel_one πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
DirichletCharacter
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
ZMod
CommRing.toCommMonoid
ZMod.commRing
MonoidHom.instFunLike
changeLevel
MulChar.hasOne
β€”map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
changeLevel_primitiveCharacter πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
DirichletCharacter
conductor
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
ZMod
CommRing.toCommMonoid
ZMod.commRing
MonoidHom.instFunLike
changeLevel
conductor_dvd_level
primitiveCharacter
β€”factorsThrough_conductor
changeLevel_self πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
DirichletCharacter
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
ZMod
CommRing.toCommMonoid
ZMod.commRing
MonoidHom.instFunLike
changeLevel
dvd_refl
Nat.instMonoid
β€”dvd_refl
ZMod.charP
MonoidHomClass.toMonoidHom.congr_simp
ZMod.castHom_self
Units.map_id
MonoidHom.CompTriple.comp_eq
MonoidHom.CompTriple.instComp_id
MonoidHom.CompTriple.instIsId
Equiv.symm_apply_apply
changeLevel_self_toUnitHom πŸ“–mathematicalβ€”MulChar.toUnitHom
ZMod
CommRing.toCommMonoid
ZMod.commRing
DFunLike.coe
MonoidHom
DirichletCharacter
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
MonoidHom.instFunLike
changeLevel
dvd_refl
Nat.instMonoid
β€”dvd_refl
changeLevel_self
changeLevel_toUnitHom πŸ“–mathematicalβ€”MulChar.toUnitHom
ZMod
CommRing.toCommMonoid
ZMod.commRing
DFunLike.coe
MonoidHom
DirichletCharacter
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
MonoidHom.instFunLike
changeLevel
MonoidHom.comp
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
CommMonoid.toMonoid
CommMonoidWithZero.toMonoidWithZero
Units.instMulOneClass
ZMod.unitsMap
β€”Equiv.apply_symm_apply
changeLevel_trans πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
DirichletCharacter
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
ZMod
CommRing.toCommMonoid
ZMod.commRing
MonoidHom.instFunLike
changeLevel
dvd_trans
Nat.instSemigroup
β€”dvd_trans
Equiv.apply_symm_apply
ZMod.unitsMap_comp
conductor_dvd_level πŸ“–mathematicalβ€”conductorβ€”FactorsThrough.dvd
conductor_mem_conductorSet
conductor_dvd_of_mem_conductorSet πŸ“–mathematicalSet
Set.instMembership
conductorSet
conductorβ€”Mathlib.Tactic.Contrapose.contrapose₃
zero_ne_mem_conductorSet
conductor_ne_zero
changeLevel_injective
dvd_trans
changeLevel_trans
conductor_dvd_level
changeLevel_primitiveCharacter
factorsThrough_gcd
Nat.sInf_le
Mathlib.Tactic.Contrapose.contrapose₁
Iff.not
conductor_eq_zero_iff_level_eq_zero πŸ“–mathematicalβ€”conductorβ€”Function.mtr
conductor_ne_zero
Nat.sInf_eq_zero
level_mem_conductorSet
conductor_le_conductor_mem_conductorSet πŸ“–mathematicalSet
Set.instMembership
conductorSet
conductor
DirichletCharacter
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
ZMod
CommRing.toCommMonoid
ZMod.commRing
MonoidHom.instFunLike
changeLevel
β€”Nat.sInf_le
mem_conductorSet_iff
dvd_trans
conductor_dvd_level
factorsThrough_conductor
FactorsThrough.dvd
changeLevel_trans
FactorsThrough.eq_changeLevel
conductor_mem_conductorSet πŸ“–mathematicalβ€”Set
Set.instMembership
conductorSet
conductor
β€”Nat.sInf_mem
Set.nonempty_of_mem
level_mem_conductorSet
conductor_ne_zero πŸ“–β€”β€”β€”β€”conductor_dvd_level
conductor_one πŸ“–mathematicalβ€”conductor
DirichletCharacter
MulChar.hasOne
ZMod
CommRing.toCommMonoid
ZMod.commRing
β€”factorsThrough_one_iff
Nat.sInf_le
mem_conductorSet_iff
conductor_ne_zero
conductor_one_dvd πŸ“–mathematicalβ€”conductor
DirichletCharacter
MulChar.hasOne
ZMod
CommRing.toCommMonoid
ZMod.commRing
β€”isPrimitive_def
isPrimitive_one_level_one
one_dvd
eq_one_iff_conductor_eq_one πŸ“–mathematicalβ€”DirichletCharacter
MulChar.hasOne
ZMod
CommRing.toCommMonoid
ZMod.commRing
conductor
β€”conductor_one
factorsThrough_conductor
level_one'
changeLevel_one
eval_modulus_sub πŸ“–mathematicalβ€”DFunLike.coe
DirichletCharacter
ZMod
MulChar.instFunLike
CommRing.toCommMonoid
ZMod.commRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”CharP.cast_eq_zero
ZMod.charP
zero_sub
even_or_odd πŸ“–mathematicalβ€”Even
Odd
β€”map_pow
MulCharClass.toMonoidHomClass
MulChar.instMulCharClass
neg_one_sq
map_one
MonoidHomClass.toOneHomClass
sq_eq_one_iff
factorsThrough_conductor πŸ“–mathematicalβ€”FactorsThrough
conductor
β€”conductor_mem_conductorSet
factorsThrough_gcd πŸ“–mathematicalDFunLike.coe
MonoidHom
DirichletCharacter
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
ZMod
CommRing.toCommMonoid
ZMod.commRing
MonoidHom.instFunLike
changeLevel
FactorsThroughβ€”factorsThrough_iff_ker_unitsMap
MonoidHom.mem_ker
Units.ext_iff
MulChar.coe_toUnitHom
Units.val_one
ZMod.natCast_eq_natCast_iff
Nat.cast_one
ZMod.natCast_val
ZMod.unitsMap_val
ZMod.cast_id'
ZMod.isUnit_iff_coprime
Units.isUnit
isUnit_one
changeLevel_eq_cast_of_dvd
ZMod.cast_natCast
ZMod.charP
map_one
MonoidHomClass.toOneHomClass
MulCharClass.toMonoidHomClass
MulChar.instMulCharClass
factorsThrough_iff_ker_unitsMap πŸ“–mathematicalβ€”FactorsThrough
Subgroup
Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
Units.instGroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
MonoidHom.ker
Units.instMulOneClass
ZMod.unitsMap
CommMonoid.toMonoid
CommRing.toCommMonoid
CommMonoidWithZero.toMonoidWithZero
MulChar.toUnitHom
β€”MonoidHom.mem_ker
changeLevel_toUnitHom
MonoidHom.comp_apply
map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
ZMod.unitsMap_surjective
MonoidHom.liftOfRightInverse_comp
Equiv.injective
Equiv.apply_symm_apply
factorsThrough_one_iff πŸ“–mathematicalβ€”FactorsThrough
DirichletCharacter
MulChar.hasOne
ZMod
CommRing.toCommMonoid
ZMod.commRing
β€”changeLevel_one
level_one
one_dvd
instSubsingletonOfNatNat πŸ“–mathematicalβ€”DirichletCharacterβ€”subsingleton_iff
level_one
isPrimitive_def πŸ“–mathematicalβ€”IsPrimitive
conductor
β€”β€”
isPrimitive_one_level_one πŸ“–mathematicalβ€”IsPrimitive
DirichletCharacter
MulChar.hasOne
ZMod
CommRing.toCommMonoid
ZMod.commRing
β€”conductor_dvd_level
isPrimitive_one_level_zero πŸ“–mathematicalβ€”IsPrimitive
DirichletCharacter
MulChar.hasOne
ZMod
CommRing.toCommMonoid
ZMod.commRing
β€”conductor_eq_zero_iff_level_eq_zero
level_mem_conductorSet πŸ“–mathematicalβ€”Set
Set.instMembership
conductorSet
β€”FactorsThrough.same_level
level_one πŸ“–mathematicalβ€”DirichletCharacter
MulChar.hasOne
ZMod
CommRing.toCommMonoid
ZMod.commRing
β€”MulChar.ext
Units.eq_one
Unique.instSubsingleton
map_one
MonoidHomClass.toOneHomClass
MulCharClass.toMonoidHomClass
MulChar.instMulCharClass
level_one' πŸ“–mathematicalβ€”DirichletCharacter
MulChar.hasOne
ZMod
CommRing.toCommMonoid
ZMod.commRing
β€”level_one
map_zero' πŸ“–mathematicalβ€”DFunLike.coe
DirichletCharacter
ZMod
MulChar.instFunLike
CommRing.toCommMonoid
ZMod.commRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
β€”ZMod.nontrivial_iff
MulChar.map_zero
mem_conductorSet_dvd πŸ“–β€”Set
Set.instMembership
conductorSet
β€”β€”FactorsThrough.dvd
mem_conductorSet_iff πŸ“–mathematicalβ€”Set
Set.instMembership
conductorSet
FactorsThrough
β€”β€”
mul_def πŸ“–mathematicalβ€”primitive_mul
primitiveCharacter
mul
β€”β€”
not_even_and_odd πŸ“–mathematicalβ€”Even
Odd
β€”Nat.instAtLeastTwoHAddOfNat
one_add_one_eq_two
primitiveCharacter_isPrimitive πŸ“–mathematicalβ€”IsPrimitive
conductor
primitiveCharacter
β€”isPrimitive_def
conductor_eq_zero_iff_level_eq_zero
le_antisymm
conductor_dvd_level
conductor_le_conductor_mem_conductorSet
conductor_mem_conductorSet
primitiveCharacter_one πŸ“–mathematicalβ€”primitiveCharacter
DirichletCharacter
MulChar.hasOne
ZMod
CommRing.toCommMonoid
ZMod.commRing
conductor
β€”eq_one_iff_conductor_eq_one
conductor_one
isPrimitive_def
primitiveCharacter_isPrimitive
primitive_mul_isPrimitive πŸ“–mathematicalβ€”IsPrimitive
conductor
mul
primitive_mul
β€”primitiveCharacter_isPrimitive
toUnitHom_eq_char' πŸ“–mathematicalIsUnit
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
DFunLike.coe
DirichletCharacter
MulChar.instFunLike
CommRing.toCommMonoid
Units.val
CommMonoidWithZero.toMonoidWithZero
MonoidHom
Units
CommMonoid.toMonoid
MulOneClass.toMulOne
Units.instMulOneClass
MonoidHom.instFunLike
MulChar.toUnitHom
IsUnit.unit
β€”MulChar.coe_equivToUnitHom
toUnitHom_inj πŸ“–mathematicalβ€”MulChar.toUnitHom
ZMod
CommRing.toCommMonoid
ZMod.commRing
β€”EquivLike.toEmbeddingLike
zero_ne_mem_conductorSet πŸ“–mathematicalβ€”Set
Set.instMembership
conductorSet
β€”FactorsThrough.dvd

DirichletCharacter.Even

Theorems

NameKindAssumesProvesValidatesDepends On
eval_neg πŸ“–mathematicalDirichletCharacter.EvenDFunLike.coe
DirichletCharacter
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
ZMod
MulChar.instFunLike
CommRing.toCommMonoid
ZMod.commRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
β€”neg_one_mul
map_mul
MonoidHomClass.toMulHomClass
MulCharClass.toMonoidHomClass
MulChar.instMulCharClass
eq_1
one_mul
not_odd πŸ“–mathematicalDirichletCharacter.EvenDirichletCharacter.Oddβ€”Nat.instAtLeastTwoHAddOfNat
DirichletCharacter.not_even_and_odd
toUnitHom_eval_neg_one πŸ“–mathematicalDirichletCharacter.EvenDFunLike.coe
MonoidHom
Units
ZMod
CommMonoid.toMonoid
CommRing.toCommMonoid
ZMod.commRing
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
MulOneClass.toMulOne
Units.instMulOneClass
MonoidHom.instFunLike
MulChar.toUnitHom
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Units.instOne
β€”MulChar.coe_toUnitHom
to_fun πŸ“–mathematicalDirichletCharacter.EvenFunction.Even
ZMod
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
ZMod.commRing
DFunLike.coe
DirichletCharacter
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
MulChar.instFunLike
CommRing.toCommMonoid
β€”neg_one_mul
map_mul
MonoidHomClass.toMulHomClass
MulCharClass.toMonoidHomClass
MulChar.instMulCharClass
one_mul

DirichletCharacter.FactorsThrough

Definitions

NameCategoryTheorems
Ο‡β‚€ πŸ“–CompOp
1 mathmath: eq_changeLevel

Theorems

NameKindAssumesProvesValidatesDepends On
dvd πŸ“–β€”DirichletCharacter.FactorsThroughβ€”β€”β€”
eq_changeLevel πŸ“–mathematicalDirichletCharacter.FactorsThroughDFunLike.coe
MonoidHom
DirichletCharacter
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
ZMod
CommRing.toCommMonoid
ZMod.commRing
MonoidHom.instFunLike
DirichletCharacter.changeLevel
dvd
Ο‡β‚€
β€”β€”
existsUnique πŸ“–mathematicalDirichletCharacter.FactorsThroughExistsUnique
DirichletCharacter
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
ZMod
CommRing.toCommMonoid
ZMod.commRing
MonoidHom.instFunLike
DirichletCharacter.changeLevel
dvd
β€”dvd
DirichletCharacter.changeLevel_injective
same_level πŸ“–mathematicalβ€”DirichletCharacter.FactorsThroughβ€”dvd_refl
DirichletCharacter.changeLevel_self

DirichletCharacter.Odd

Theorems

NameKindAssumesProvesValidatesDepends On
eval_neg πŸ“–mathematicalDirichletCharacter.OddDFunLike.coe
DirichletCharacter
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
ZMod
MulChar.instFunLike
CommRing.toCommMonoid
ZMod.commRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
β€”neg_one_mul
map_mul
MonoidHomClass.toMulHomClass
MulCharClass.toMonoidHomClass
MulChar.instMulCharClass
eq_1
neg_mul
one_mul
not_even πŸ“–mathematicalDirichletCharacter.OddDirichletCharacter.Evenβ€”Nat.instAtLeastTwoHAddOfNat
DirichletCharacter.not_even_and_odd
toUnitHom_eval_neg_one πŸ“–mathematicalDirichletCharacter.OddDFunLike.coe
MonoidHom
Units
ZMod
CommMonoid.toMonoid
CommRing.toCommMonoid
ZMod.commRing
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
MulOneClass.toMulOne
Units.instMulOneClass
MonoidHom.instFunLike
MulChar.toUnitHom
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Units.instOne
β€”MulChar.coe_toUnitHom
to_fun πŸ“–mathematicalDirichletCharacter.OddFunction.Odd
ZMod
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
ZMod.commRing
DFunLike.coe
DirichletCharacter
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
MulChar.instFunLike
CommRing.toCommMonoid
β€”neg_one_mul
map_mul
MonoidHomClass.toMulHomClass
MulCharClass.toMonoidHomClass
MulChar.instMulCharClass

(root)

Definitions

NameCategoryTheorems
DirichletCharacter πŸ“–CompOp
76 mathmath: ArithmeticFunction.vonMangoldt.residueClass_eq, DirichletCharacter.changeLevel_injective, DirichletCharacter.Odd.eval_neg, DirichletCharacter.LSeries_eulerProduct_tprod, DirichletCharacter.LSeries_modOne_eq, DirichletCharacter.changeLevel_def, DirichletCharacter.LSeriesSummable_of_one_lt_re, DirichletCharacter.conductor_le_conductor_mem_conductorSet, DirichletCharacter.changeLevel_trans, DirichletCharacter.LSeries_twist_vonMangoldt_eq, DirichletCharacter.LFunction_eq_LSeries, DirichletCharacter.norm_LSeries_product_ge_one, DirichletCharacter.deriv_LFunction_eq_deriv_LSeries, DirichletCharacter.LFunction_changeLevel, DirichletCharacter.IsPrimitive.completedLFunction_one_sub, DirichletCharacter.primitiveCharacter_one, DirichletCharacter.norm_le_one, DirichletCharacter.mul_delta, DirichletCharacter.eval_modulus_sub, DirichletCharacter.instSubsingletonOfNatNat, DirichletCharacter.unit_norm_eq_one, DirichletCharacter.Odd.to_fun, DirichletCharacter.sum_characters_eq, ArithmeticFunction.vonMangoldt.residueClass_apply, DirichletCharacter.level_one', DirichletCharacter.LSeriesSummable_mul, DirichletCharacter.conductor_one, DirichletCharacter.LSeries_changeLevel, DirichletCharacter.mulEquiv_units, DirichletCharacter.changeLevel_one, DirichletCharacter.toUnitHom_eq_char', DirichletCharacter.changeLevel_toUnitHom, DirichletCharacter.level_one, DirichletCharacter.LSeries.mul_mu_eq_one, DirichletCharacter.sum_char_inv_mul_char_eq, gaussSum_aux_of_mulShift, DirichletCharacter.summable_neg_log_one_sub_mul_prime_cpow, gaussSum_mulShift_of_isPrimitive, DirichletCharacter.isPrimitive_one_level_one, DirichletCharacter.LSeriesSummable_twist_vonMangoldt, DirichletCharacter.isPrimitive_one_level_zero, DirichletCharacter.modOne_eq_one, DirichletCharacter.convolution_twist_vonMangoldt, DirichletCharacter.LSeriesSummable_iff, DirichletCharacter.IsPrimitive.fourierTransform_eq_inv_mul_gaussSum, DirichletCharacter.changeLevel_factorsThrough, DirichletCharacter.absicssaOfAbsConv_eq_one, DirichletCharacter.eq_one_iff_conductor_eq_one, DirichletCharacter.sum_characters_eq_zero, DirichletCharacter.mul_convolution_distrib, DirichletCharacter.norm_LFunction_product_ge_one, DirichletCharacter.LSeries_eulerProduct_hasProd, tsum_dirichletSummand, DirichletCharacter.LSeries_eulerProduct_exp_log, ArithmeticFunction.vonMangoldt.LSeries_residueClass_eq, DirichletCharacter.changeLevel_eq_one_iff, DirichletCharacter.FactorsThrough.existsUnique, DirichletCharacter.apply_eq_toArithmeticFunction_apply, DirichletCharacter.not_LSeriesSummable_at_one, DirichletCharacter.changeLevel_self_toUnitHom, DirichletCharacter.card_eq_totient_of_hasEnoughRootsOfUnity, DirichletCharacter.delta_mul, DirichletCharacter.isMultiplicative_toArithmeticFunction, DirichletCharacter.convolution_mul_moebius, DirichletCharacter.factorsThrough_one_iff, DirichletCharacter.Even.to_fun, DirichletCharacter.changeLevel_primitiveCharacter, DirichletCharacter.map_zero', DirichletCharacter.modZero_eq_delta, DirichletCharacter.fourierTransform_eq_gaussSum_mulShift, DirichletCharacter.LSeries_eulerProduct, DirichletCharacter.changeLevel_self, DirichletCharacter.conductor_one_dvd, DirichletCharacter.changeLevel_eq_cast_of_dvd, DirichletCharacter.FactorsThrough.eq_changeLevel, DirichletCharacter.Even.eval_neg

---

← Back to Index