π Source: Mathlib/NumberTheory/Divisors.lean
divisorsAntidiag
divisors
divisorsAntidiagonal
divisorsAntidiagonalList
properDivisors
divisorsAntidiag_natCast
divisorsAntidiag_neg
divisorsAntidiag_neg_natCast
divisorsAntidiag_ofNat
divisorsAntidiag_zero
divisorsAntidiagonal_four
divisorsAntidiagonal_one
divisorsAntidiagonal_three
divisorsAntidiagonal_two
map_neg_divisorsAntidiag
map_prodComm_divisorsAntidiag
mem_divisorsAntidiag
mul_mem_one_two_three_iff
mul_mem_zero_one_two_three_four_iff
neg_mem_divisorsAntidiag
prodMk_mem_divisorsAntidiag
swap_mem_divisorsAntidiag
prod_divisors
prod_properDivisors
sum_divisors
sum_properDivisors
card_divisors_le_self
cons_self_properDivisors
disjoint_divisors_filter_isPrimePow
divisor_le
divisorsAntidiagonalList_one
divisorsAntidiagonalList_zero
divisorsAntidiagonal_eq_prod_filter_of_le
divisorsAntidiagonal_zero
divisors_eq_empty
divisors_filter_dvd_of_dvd
divisors_inj
divisors_injective
divisors_one
divisors_prime_pow
divisors_subset_of_dvd
divisors_subset_properDivisors
divisors_zero
dvd_of_mem_divisors
eq_properDivisors_of_subset_of_sum_eq_sum
filter_dvd_eq_divisors
filter_dvd_eq_properDivisors
fst_mem_divisors_of_mem_antidiagonal
image_div_divisors_eq_divisors
image_fst_divisorsAntidiagonal
image_snd_divisorsAntidiagonal
insert_self_properDivisors
left_ne_zero_of_mem_divisorsAntidiagonal
map_div_left_divisors
map_div_right_divisors
map_swap_divisorsAntidiagonal
mem_divisors
mem_divisorsAntidiagonal
mem_divisorsAntidiagonalList
mem_divisors_prime_pow
mem_divisors_self
mem_properDivisors
mem_properDivisors_iff_exists
mem_properDivisors_prime_pow
ne_zero_of_mem_divisors
ne_zero_of_mem_divisorsAntidiagonal
nodup_divisorsAntidiagonalList
nonempty_divisors
nonempty_properDivisors
one_lt_div_of_mem_properDivisors
one_lt_of_mem_properDivisors
one_mem_divisors
one_mem_properDivisors_iff_one_lt
pairwise_divisorsAntidiagonalList_fst
pairwise_divisorsAntidiagonalList_snd
perfect_iff_sum_divisors_eq_two_mul
perfect_iff_sum_properDivisors
pos_of_mem_divisors
pos_of_mem_properDivisors
primeFactors_eq_to_filter_divisors_prime
primeFactors_filter_dvd_of_dvd
prod_div_divisors
prod_divisorsAntidiagonal
prod_divisorsAntidiagonal'
prod_divisors_prime_pow
prod_properDivisors_prime_pow
properDivisors_eq_empty
properDivisors_eq_singleton_one_iff_prime
properDivisors_one
properDivisors_prime_pow
properDivisors_subset_divisors
properDivisors_zero
reverse_divisorsAntidiagonalList
right_ne_zero_of_mem_divisorsAntidiagonal
self_notMem_properDivisors
snd_mem_divisors_of_mem_antidiagonal
sortedGT_map_snd_divisorsAntidiagonalList
sortedLT_map_fst_divisorsAntidiagonalList
sorted_divisorsAntidiagonalList_fst
sorted_divisorsAntidiagonalList_snd
sum_div_divisors
sum_divisorsAntidiagonal
sum_divisorsAntidiagonal'
sum_divisors_eq_sum_properDivisors_add_self
sum_divisors_prime_pow
sum_properDivisors_dvd
sum_properDivisors_eq_one_iff_prime
sum_properDivisors_prime_nsmul
sup_divisors_id
swap_mem_divisorsAntidiagonal
swap_mem_divisorsAntidiagonalList
toFinset_divisorsAntidiagonalList
val_divisorsAntidiagonal
Finset.disjUnion
Finset.map
Function.Embedding.prodMap
Nat.castEmbedding
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
instRing
instCharZero
Nat.divisorsAntidiagonal
Function.Embedding.trans
Equiv.toEmbedding
Equiv.neg
HasDistribNeg.toInvolutiveNeg
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
NonUnitalNonAssocRing.toHasDistribNeg
Function.Embedding.refl
Finset.ext
neg_zero
mul_neg
Finset
Finset.instEmptyCollection
Finset.instInsert
Finset.instSingleton
Prod.instInvolutiveNeg
mul_comm
neg_neg
Equiv.prodComm
Finset.instMembership
Finset.disjUnion_eq_union
instIsStrictOrderedRing
MulZeroClass.mul_zero
neg_mul
Nat.cast_one
MulZeroClass.zero_mul
IsDomain.to_noZeroDivisors
Nat.instIsDomain
one_mul
neg_add_rev
Nat.cast_zero
Nat.cast_mul
Nat.cast_add
Set
Set.instMembership
Set.instInsert
Set.instSingletonSet
Nat.instAtLeastTwoHAddOfNat
instIsDomain
Prod.instNeg
divisorsHom_apply
divisors_filter_squarefree_of_squarefree
IsPrimitiveRoot.nthRoots_one_eq_biUnion_primitiveRoots
ArithmeticFunction.sigma_apply
ArithmeticFunction.prod_eq_iff_prod_pow_moebius_eq
Polynomial.prod_cyclotomic_eq_X_pow_sub_one
ArithmeticFunction.prod_eq_iff_prod_pow_moebius_eq_on_of_nonzero
ArithmeticFunction.sigma_zero_apply
sum_totient
divisors_card_eq_one_iff
divisors_mul
Prime.sum_divisors
List.nat_divisors_prod
Polynomial.prod_cyclotomic'_eq_X_pow_sub_one
ArithmeticFunction.sigma_one_apply
ArithmeticFunction.vonMangoldt_sum
ArithmeticFunction.sum_divisorsAntidiagonal_eq_sum_divisors
Finset.nat_divisors_prod
BoundingSieve.siftedSum_le_sum_of_upperMoebius
ArithmeticFunction.sum_eq_iff_sum_smul_moebius_eq
ArithmeticFunction.sum_eq_iff_sum_mul_moebius_eq_on
sum_divisors_filter_squarefree
ArithmeticFunction.sum_eq_iff_sum_mul_moebius_eq
card_divisors
Coprime.card_divisors_mul
Polynomial.X_pow_sub_one_mul_prod_cyclotomic_eq_X_pow_sub_one_of_dvd
ArithmeticFunction.coe_zeta_smul_apply
Polynomial.prod_cyclotomic_eq_geom_sum
Prime.prod_divisors
Prime.divisors
Multiset.nat_divisors_prod
ArithmeticFunction.sum_moebius_mul_log_eq
ArithmeticFunction.coe_mul_zeta_apply
ArithmeticFunction.mul_zeta_apply
ArithmeticFunction.IsMultiplicative.prodPrimeFactors_one_add_of_squarefree
abundant_iff_sum_divisors
ArithmeticFunction.prod_eq_iff_prod_pow_moebius_eq_on
Prime.divisors_sq
image_apply_finMulAntidiag
divisors_filter_squarefree
ArithmeticFunction.sum_eq_iff_sum_smul_moebius_eq_on'
range_pow_padicValNat_subset_divisors'
card_pair_lcm_eq
sum_card_addOrderOf_eq_card_nsmul_eq_zero
ArithmeticFunction.zeta_mul_apply
Coprime.sum_divisors_mul
isRoot_of_unity_iff
ArithmeticFunction.prod_eq_iff_prod_pow_moebius_eq_of_nonzero
mul_divisors_filter_prime_pow
sum_card_orderOf_eq_card_pow_eq_one
ArithmeticFunction.sigma_eq_sum_div
ArithmeticFunction.IsMultiplicative.prodPrimeFactors_one_sub_of_squarefree
finMulAntidiag_eq_piFinset_divisors_filter
range_pow_padicValNat_subset_divisors
ArithmeticFunction.coe_zeta_mul_apply
ArithmeticFunction.sum_eq_iff_sum_smul_moebius_eq_on
sigmaAntidiagonalEquivProd_symm_apply_snd
LSeries.convolution_def
ArithmeticFunction.smul_apply
Int.divisorsAntidiag_natCast
LSeries.term_convolution
image_piFinTwoEquiv_finMulAntidiag
sigmaAntidiagonalEquivProd_symm_apply_fst
Polynomial.cyclotomic_eq_prod_X_pow_sub_one_pow_moebius
Int.divisorsAntidiag_ofNat
ArithmeticFunction.mul_apply
Int.divisorsAntidiag_neg_natCast
Polynomial.eq_cyclotomic_iff
Prime.properDivisors
Polynomial.X_pow_sub_one_dvd_prod_cyclotomic
Prime.sum_properDivisors
Prime.prod_properDivisors
Polynomial.cyclotomic_eq_X_pow_sub_one_div
Polynomial.cyclotomic'_eq_X_pow_sub_one_div
Finset.card
Finset.card_le_card
card_Ico
add_tsub_cancel_right
instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Finset.cons
Finset.cons_eq_insert
Disjoint
Finset.partialOrder
Finset.instOrderBot
Finset.filter
IsPrimePow
instCommMonoidWithZero
instDecidableIsPrimePowNat
IsPrimePow.ne_one
eq_one_of_dvd_coprimes
instCanonicallyOrderedAdd
instIsEmptyFalse
SProd.sprod
Finset.instSProd
Finset.Ioc
instPreorder
instLocallyFiniteOrder
Mathlib.Tactic.GCongr.and_right_mono
le_imp_le_of_le_of_le
le_refl
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
IsOrderedRing.toMulPosMono
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Unique.instSubsingleton
Mathlib.Tactic.Contrapose.contrapose_iffβ
ne_zero_of_dvd_ne_zero
Dvd.dvd.trans
instCommutativeMax_mathlib
instAssociativeMax_mathlib
Prime
Monoid.toNatPow
instMonoid
pow_right_injective
Prime.two_le
Finset.range
instNoMaxOrder
Finset.instHasSubset
Finset.subset_iff
lt_of_le_of_lt
lt_of_le_of_ne
Finset.sum
instAddCommMonoid
Finset.sum_congr
Finset.subset_empty
Finset.sum_sdiff
Finset.Subset.antisymm
Finset.sdiff_eq_empty_iff_subset
Mathlib.Tactic.Contrapose.contraposeβ
zero_add
add_assoc
add_zero
add_lt_add_left
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Finset.sum_lt_sum_of_nonempty
instIsOrderedCancelAddMonoid
Finset.sdiff_subset
Finset.sum_const_zero
Ne.bot_lt
Dvd.intro
Finset.image
Finset.mem_image
Finset.map_eq_image
Finset.image_image
divisors.eq_1
properDivisors.eq_1
Finset.insert_Ico_right_eq_Ico_add_one
Finset.filter_insert
dvd_refl
Finset.map_injective
Finset.map_map
left_ne_zero_of_mul
dvd_mul_right
Finset.coe_map
Equiv.coe_toEmbedding
Equiv.coe_prodComm
Set.image_swap_eq_preimage_swap
Set.ext
eq_or_ne
Finset.filter.congr_simp
Finset.Ico_eq_empty_of_le
Finset.filter_empty
Finset.filterMap.congr_simp
mul_ne_zero_iff
mul_div_cancel_leftβ
instMulDivCancelClass
List.mem_toFinset
dvd_prime_pow
pow_pos
instZeroLEOneClass
Prime.pos
dvd_rfl
lt_mul_of_one_lt_right
Prime.one_lt
List.Pairwise.nodup
Finset.Nonempty
mul_one
one_dvd
List.SortedLT.pairwise
List.sortedLT_range'
Perfect
instAtLeastTwoHAddOfNat
two_mul
add_right_cancel
zero_dvd_iff
primeFactors
decidablePrime
Finset.filter_comm
Finset.prod
Finset.prod_congr
Finset.prod_const
pow_zero
Finset.prod_image
Finset.mem_coe
Finset.prod_map
prime_def
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
contravariant_swap_add_of_contravariant_add
Finset.mem_singleton
nonpos_iff_eq_zero
le_iff_eq_or_lt
Finset.Ico_self
Finset.filter_subset_filter
Finset.Ico_subset_Ico_right
lt_asymm
List.Perm.eq_of_pairwise'
List.Pairwise.reverse
List.Nodup.map
Prod.swap_injective
Dvd.intro_left
List.SortedGT
List.Pairwise.sortedGT
List.SortedLT
List.Pairwise.sortedLT
Finset.sum_const
zero_nsmul
Finset.sum_image
Finset.sum_map
Decidable.eq_or_ne
Finset.sum_cons
add_comm
Finset.singleton_subset_iff
Finset.sum_singleton
Finset.sup
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeNat
instOrderBot
le_antisymm
Finset.sup_le
Finset.le_sup
Prod.swap.eq_1
List.toFinset
divisorsAntidiagonalList.eq_1
divisorsAntidiagonal.eq_1
List.toFinset_filterMap
List.toFinset_range'_1_1
Finset.val
Multiset.ofList
Nat.Prime
Nat.divisors
Nat.mem_divisors
Nat.dvd_prime
ne_zero
Finset.mem_insert
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Nat.self_notMem_properDivisors
Nat.cons_self_properDivisors
Finset.prod_cons
Nat.properDivisors
Finset.prod_singleton
Finset.erase_insert
Nat.insert_self_properDivisors
Finset.pair_comm
ne_one
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
---
β Back to Index