Documentation Verification Report

Divisors

πŸ“ Source: Mathlib/NumberTheory/Divisors.lean

Statistics

MetricCount
DefinitionsdivisorsAntidiag, divisors, divisorsAntidiagonal, divisorsAntidiagonalList, properDivisors
5
TheoremsdivisorsAntidiag_natCast, divisorsAntidiag_neg, divisorsAntidiag_neg_natCast, divisorsAntidiag_ofNat, divisorsAntidiag_zero, divisorsAntidiagonal_four, divisorsAntidiagonal_one, divisorsAntidiagonal_three, divisorsAntidiagonal_two, map_neg_divisorsAntidiag, map_prodComm_divisorsAntidiag, mem_divisorsAntidiag, mul_mem_one_two_three_iff, mul_mem_zero_one_two_three_four_iff, neg_mem_divisorsAntidiag, prodMk_mem_divisorsAntidiag, swap_mem_divisorsAntidiag, divisors, prod_divisors, prod_properDivisors, properDivisors, sum_divisors, sum_properDivisors, card_divisors_le_self, cons_self_properDivisors, disjoint_divisors_filter_isPrimePow, divisor_le, divisorsAntidiagonalList_one, divisorsAntidiagonalList_zero, divisorsAntidiagonal_eq_prod_filter_of_le, divisorsAntidiagonal_one, divisorsAntidiagonal_zero, divisors_eq_empty, divisors_filter_dvd_of_dvd, divisors_inj, divisors_injective, divisors_one, divisors_prime_pow, divisors_subset_of_dvd, divisors_subset_properDivisors, divisors_zero, dvd_of_mem_divisors, eq_properDivisors_of_subset_of_sum_eq_sum, filter_dvd_eq_divisors, filter_dvd_eq_properDivisors, fst_mem_divisors_of_mem_antidiagonal, image_div_divisors_eq_divisors, image_fst_divisorsAntidiagonal, image_snd_divisorsAntidiagonal, insert_self_properDivisors, left_ne_zero_of_mem_divisorsAntidiagonal, map_div_left_divisors, map_div_right_divisors, map_swap_divisorsAntidiagonal, mem_divisors, mem_divisorsAntidiagonal, mem_divisorsAntidiagonalList, mem_divisors_prime_pow, mem_divisors_self, mem_properDivisors, mem_properDivisors_iff_exists, mem_properDivisors_prime_pow, ne_zero_of_mem_divisors, ne_zero_of_mem_divisorsAntidiagonal, nodup_divisorsAntidiagonalList, nonempty_divisors, nonempty_properDivisors, one_lt_div_of_mem_properDivisors, one_lt_of_mem_properDivisors, one_mem_divisors, one_mem_properDivisors_iff_one_lt, pairwise_divisorsAntidiagonalList_fst, pairwise_divisorsAntidiagonalList_snd, perfect_iff_sum_divisors_eq_two_mul, perfect_iff_sum_properDivisors, pos_of_mem_divisors, pos_of_mem_properDivisors, primeFactors_eq_to_filter_divisors_prime, primeFactors_filter_dvd_of_dvd, prodMk_mem_divisorsAntidiag, prod_div_divisors, prod_divisorsAntidiagonal, prod_divisorsAntidiagonal', prod_divisors_prime_pow, prod_properDivisors_prime_pow, properDivisors_eq_empty, properDivisors_eq_singleton_one_iff_prime, properDivisors_one, properDivisors_prime_pow, properDivisors_subset_divisors, properDivisors_zero, reverse_divisorsAntidiagonalList, right_ne_zero_of_mem_divisorsAntidiagonal, self_notMem_properDivisors, snd_mem_divisors_of_mem_antidiagonal, sortedGT_map_snd_divisorsAntidiagonalList, sortedLT_map_fst_divisorsAntidiagonalList, sorted_divisorsAntidiagonalList_fst, sorted_divisorsAntidiagonalList_snd, sum_div_divisors, sum_divisorsAntidiagonal, sum_divisorsAntidiagonal', sum_divisors_eq_sum_properDivisors_add_self, sum_divisors_prime_pow, sum_properDivisors_dvd, sum_properDivisors_eq_one_iff_prime, sum_properDivisors_prime_nsmul, sup_divisors_id, swap_mem_divisorsAntidiagonal, swap_mem_divisorsAntidiagonalList, toFinset_divisorsAntidiagonalList, val_divisorsAntidiagonal
112
Total117

Int

Definitions

NameCategoryTheorems
divisorsAntidiag πŸ“–CompOp
15 mathmath: mem_divisorsAntidiag, prodMk_mem_divisorsAntidiag, map_prodComm_divisorsAntidiag, divisorsAntidiagonal_three, divisorsAntidiag_natCast, divisorsAntidiagonal_four, divisorsAntidiagonal_two, divisorsAntidiagonal_one, neg_mem_divisorsAntidiag, divisorsAntidiag_neg, divisorsAntidiag_ofNat, swap_mem_divisorsAntidiag, divisorsAntidiag_zero, divisorsAntidiag_neg_natCast, map_neg_divisorsAntidiag

Theorems

NameKindAssumesProvesValidatesDepends On
divisorsAntidiag_natCast πŸ“–mathematicalβ€”divisorsAntidiag
Finset.disjUnion
Finset.map
Function.Embedding.prodMap
Nat.castEmbedding
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
instRing
instCharZero
Nat.divisorsAntidiagonal
Function.Embedding.trans
Equiv.toEmbedding
Equiv.neg
HasDistribNeg.toInvolutiveNeg
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
NonUnitalNonAssocRing.toHasDistribNeg
β€”β€”
divisorsAntidiag_neg πŸ“–mathematicalβ€”divisorsAntidiag
Finset.map
Function.Embedding.prodMap
Function.Embedding.refl
Equiv.toEmbedding
Equiv.neg
HasDistribNeg.toInvolutiveNeg
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
NonUnitalNonAssocRing.toHasDistribNeg
β€”Finset.ext
neg_zero
mul_neg
divisorsAntidiag_neg_natCast πŸ“–mathematicalβ€”divisorsAntidiag
Finset.disjUnion
Finset.map
Function.Embedding.prodMap
Nat.castEmbedding
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
instRing
instCharZero
Function.Embedding.trans
Equiv.toEmbedding
Equiv.neg
HasDistribNeg.toInvolutiveNeg
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
NonUnitalNonAssocRing.toHasDistribNeg
Nat.divisorsAntidiagonal
β€”instCharZero
divisorsAntidiag_ofNat πŸ“–mathematicalβ€”divisorsAntidiag
Finset.disjUnion
Finset.map
Function.Embedding.prodMap
Nat.castEmbedding
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
instRing
instCharZero
Nat.divisorsAntidiagonal
Function.Embedding.trans
Equiv.toEmbedding
Equiv.neg
HasDistribNeg.toInvolutiveNeg
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
NonUnitalNonAssocRing.toHasDistribNeg
β€”β€”
divisorsAntidiag_zero πŸ“–mathematicalβ€”divisorsAntidiag
Finset
Finset.instEmptyCollection
β€”β€”
divisorsAntidiagonal_four πŸ“–mathematicalβ€”divisorsAntidiag
Finset
Finset.instInsert
Finset.instSingleton
β€”β€”
divisorsAntidiagonal_one πŸ“–mathematicalβ€”divisorsAntidiag
Finset
Finset.instInsert
Finset.instSingleton
β€”β€”
divisorsAntidiagonal_three πŸ“–mathematicalβ€”divisorsAntidiag
Finset
Finset.instInsert
Finset.instSingleton
β€”β€”
divisorsAntidiagonal_two πŸ“–mathematicalβ€”divisorsAntidiag
Finset
Finset.instInsert
Finset.instSingleton
β€”β€”
map_neg_divisorsAntidiag πŸ“–mathematicalβ€”Finset.map
Equiv.toEmbedding
Equiv.neg
Prod.instInvolutiveNeg
HasDistribNeg.toInvolutiveNeg
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
NonUnitalNonAssocRing.toHasDistribNeg
divisorsAntidiag
β€”Finset.ext
mul_neg
mul_comm
neg_neg
map_prodComm_divisorsAntidiag πŸ“–mathematicalβ€”Finset.map
Equiv.toEmbedding
Equiv.prodComm
divisorsAntidiag
β€”Finset.ext
mem_divisorsAntidiag πŸ“–mathematicalβ€”Finset
Finset.instMembership
divisorsAntidiag
β€”instCharZero
Finset.disjUnion_eq_union
instIsStrictOrderedRing
MulZeroClass.mul_zero
mul_neg
neg_mul
neg_neg
Nat.cast_one
MulZeroClass.zero_mul
IsDomain.to_noZeroDivisors
Nat.instIsDomain
one_mul
neg_add_rev
Nat.cast_zero
Nat.cast_mul
Nat.cast_add
mul_mem_one_two_three_iff πŸ“–mathematicalβ€”Set
Set.instMembership
Set.instInsert
Set.instSingletonSet
β€”instCharZero
Nat.instAtLeastTwoHAddOfNat
mul_mem_zero_one_two_three_four_iff πŸ“–mathematicalβ€”Set
Set.instMembership
Set.instInsert
Set.instSingletonSet
β€”instCharZero
Nat.instAtLeastTwoHAddOfNat
IsDomain.to_noZeroDivisors
instIsDomain
neg_mem_divisorsAntidiag πŸ“–mathematicalβ€”Finset
Finset.instMembership
divisorsAntidiag
Prod.instNeg
β€”mul_neg
neg_mul
neg_neg
prodMk_mem_divisorsAntidiag πŸ“–mathematicalβ€”Finset
Finset.instMembership
divisorsAntidiag
β€”β€”
swap_mem_divisorsAntidiag πŸ“–mathematicalβ€”Finset
Finset.instMembership
divisorsAntidiag
β€”mul_comm

Nat

Definitions

NameCategoryTheorems
divisors πŸ“–CompOp
96 mathmath: divisorsHom_apply, divisors_filter_squarefree_of_squarefree, IsPrimitiveRoot.nthRoots_one_eq_biUnion_primitiveRoots, divisors_prime_pow, prod_divisorsAntidiagonal', ArithmeticFunction.sigma_apply, map_div_left_divisors, ArithmeticFunction.prod_eq_iff_prod_pow_moebius_eq, divisors_subset_of_dvd, Polynomial.prod_cyclotomic_eq_X_pow_sub_one, mem_divisors, ArithmeticFunction.prod_eq_iff_prod_pow_moebius_eq_on_of_nonzero, ArithmeticFunction.sigma_zero_apply, sum_totient, divisors_card_eq_one_iff, divisors_mul, primeFactors_eq_to_filter_divisors_prime, Prime.sum_divisors, List.nat_divisors_prod, snd_mem_divisors_of_mem_antidiagonal, one_mem_divisors, disjoint_divisors_filter_isPrimePow, Polynomial.prod_cyclotomic'_eq_X_pow_sub_one, ArithmeticFunction.sigma_one_apply, perfect_iff_sum_divisors_eq_two_mul, image_div_divisors_eq_divisors, properDivisors_subset_divisors, ArithmeticFunction.vonMangoldt_sum, ArithmeticFunction.sum_divisorsAntidiagonal_eq_sum_divisors, divisors_filter_dvd_of_dvd, image_snd_divisorsAntidiagonal, divisors_eq_empty, map_div_right_divisors, Finset.nat_divisors_prod, BoundingSieve.siftedSum_le_sum_of_upperMoebius, divisors_injective, ArithmeticFunction.sum_eq_iff_sum_smul_moebius_eq, ArithmeticFunction.sum_eq_iff_sum_mul_moebius_eq_on, sum_divisors_filter_squarefree, ArithmeticFunction.sum_eq_iff_sum_mul_moebius_eq, prod_divisors_prime_pow, cons_self_properDivisors, sum_divisors_eq_sum_properDivisors_add_self, sum_divisorsAntidiagonal', card_divisors, sum_div_divisors, Coprime.card_divisors_mul, Polynomial.X_pow_sub_one_mul_prod_cyclotomic_eq_X_pow_sub_one_of_dvd, image_fst_divisorsAntidiagonal, ArithmeticFunction.coe_zeta_smul_apply, prod_divisorsAntidiagonal, filter_dvd_eq_divisors, Polynomial.prod_cyclotomic_eq_geom_sum, divisors_subset_properDivisors, Prime.prod_divisors, Prime.divisors, Multiset.nat_divisors_prod, ArithmeticFunction.sum_moebius_mul_log_eq, sum_divisors_prime_pow, ArithmeticFunction.coe_mul_zeta_apply, sup_divisors_id, card_divisors_le_self, divisors_inj, ArithmeticFunction.mul_zeta_apply, sum_divisors, nonempty_divisors, ArithmeticFunction.IsMultiplicative.prodPrimeFactors_one_add_of_squarefree, fst_mem_divisors_of_mem_antidiagonal, abundant_iff_sum_divisors, ArithmeticFunction.prod_eq_iff_prod_pow_moebius_eq_on, Prime.divisors_sq, mem_divisors_prime_pow, prod_div_divisors, insert_self_properDivisors, image_apply_finMulAntidiag, divisors_one, divisors_filter_squarefree, ArithmeticFunction.sum_eq_iff_sum_smul_moebius_eq_on', range_pow_padicValNat_subset_divisors', card_pair_lcm_eq, sum_card_addOrderOf_eq_card_nsmul_eq_zero, ArithmeticFunction.zeta_mul_apply, mem_divisors_self, Coprime.sum_divisors_mul, isRoot_of_unity_iff, ArithmeticFunction.prod_eq_iff_prod_pow_moebius_eq_of_nonzero, mul_divisors_filter_prime_pow, sum_card_orderOf_eq_card_pow_eq_one, ArithmeticFunction.sigma_eq_sum_div, ArithmeticFunction.IsMultiplicative.prodPrimeFactors_one_sub_of_squarefree, finMulAntidiag_eq_piFinset_divisors_filter, range_pow_padicValNat_subset_divisors, ArithmeticFunction.coe_zeta_mul_apply, ArithmeticFunction.sum_eq_iff_sum_smul_moebius_eq_on, divisors_zero, sum_divisorsAntidiagonal
divisorsAntidiagonal πŸ“–CompOp
38 mathmath: swap_mem_divisorsAntidiagonal, prod_divisorsAntidiagonal', map_swap_divisorsAntidiagonal, map_div_left_divisors, ArithmeticFunction.prod_eq_iff_prod_pow_moebius_eq, sigmaAntidiagonalEquivProd_symm_apply_snd, LSeries.convolution_def, ArithmeticFunction.prod_eq_iff_prod_pow_moebius_eq_on_of_nonzero, ArithmeticFunction.smul_apply, mem_divisorsAntidiagonal, Int.divisorsAntidiag_natCast, toFinset_divisorsAntidiagonalList, LSeries.term_convolution, ArithmeticFunction.sum_divisorsAntidiagonal_eq_sum_divisors, image_snd_divisorsAntidiagonal, map_div_right_divisors, image_piFinTwoEquiv_finMulAntidiag, ArithmeticFunction.sum_eq_iff_sum_smul_moebius_eq, ArithmeticFunction.sum_eq_iff_sum_mul_moebius_eq_on, ArithmeticFunction.sum_eq_iff_sum_mul_moebius_eq, sum_divisorsAntidiagonal', image_fst_divisorsAntidiagonal, prod_divisorsAntidiagonal, sigmaAntidiagonalEquivProd_symm_apply_fst, Polynomial.cyclotomic_eq_prod_X_pow_sub_one_pow_moebius, divisorsAntidiagonal_eq_prod_filter_of_le, Int.divisorsAntidiag_ofNat, ArithmeticFunction.prod_eq_iff_prod_pow_moebius_eq_on, ArithmeticFunction.mul_apply, val_divisorsAntidiagonal, divisorsAntidiagonal_zero, divisorsAntidiagonal_one, ArithmeticFunction.sum_eq_iff_sum_smul_moebius_eq_on', ArithmeticFunction.prod_eq_iff_prod_pow_moebius_eq_of_nonzero, prodMk_mem_divisorsAntidiag, ArithmeticFunction.sum_eq_iff_sum_smul_moebius_eq_on, Int.divisorsAntidiag_neg_natCast, sum_divisorsAntidiagonal
divisorsAntidiagonalList πŸ“–CompOp
14 mathmath: sortedLT_map_fst_divisorsAntidiagonalList, pairwise_divisorsAntidiagonalList_fst, reverse_divisorsAntidiagonalList, toFinset_divisorsAntidiagonalList, mem_divisorsAntidiagonalList, divisorsAntidiagonalList_one, swap_mem_divisorsAntidiagonalList, sorted_divisorsAntidiagonalList_snd, sortedGT_map_snd_divisorsAntidiagonalList, sorted_divisorsAntidiagonalList_fst, divisorsAntidiagonalList_zero, val_divisorsAntidiagonal, pairwise_divisorsAntidiagonalList_snd, nodup_divisorsAntidiagonalList
properDivisors πŸ“–CompOp
28 mathmath: mem_properDivisors_prime_pow, Polynomial.eq_cyclotomic_iff, properDivisors_zero, perfect_iff_sum_properDivisors, one_mem_properDivisors_iff_one_lt, properDivisors_one, properDivisors_eq_empty, mem_properDivisors_iff_exists, Prime.properDivisors, Polynomial.X_pow_sub_one_dvd_prod_cyclotomic, sum_properDivisors_eq_one_iff_prime, properDivisors_prime_pow, properDivisors_subset_divisors, properDivisors_eq_singleton_one_iff_prime, cons_self_properDivisors, Prime.sum_properDivisors, sum_divisors_eq_sum_properDivisors_add_self, Prime.prod_properDivisors, filter_dvd_eq_properDivisors, nonempty_properDivisors, prod_properDivisors_prime_pow, divisors_subset_properDivisors, self_notMem_properDivisors, mem_properDivisors, insert_self_properDivisors, sum_properDivisors_prime_nsmul, Polynomial.cyclotomic_eq_X_pow_sub_one_div, Polynomial.cyclotomic'_eq_X_pow_sub_one_div

Theorems

NameKindAssumesProvesValidatesDepends On
card_divisors_le_self πŸ“–mathematicalβ€”Finset.card
divisors
β€”Finset.card_le_card
card_Ico
add_tsub_cancel_right
instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
cons_self_properDivisors πŸ“–mathematicalβ€”Finset.cons
properDivisors
self_notMem_properDivisors
divisors
β€”self_notMem_properDivisors
Finset.cons_eq_insert
insert_self_properDivisors
disjoint_divisors_filter_isPrimePow πŸ“–mathematicalβ€”Disjoint
Finset
Finset.partialOrder
Finset.instOrderBot
Finset.filter
IsPrimePow
instCommMonoidWithZero
instDecidableIsPrimePowNat
divisors
β€”IsPrimePow.ne_one
eq_one_of_dvd_coprimes
divisor_le πŸ“–β€”Finset
Finset.instMembership
divisors
β€”β€”instCanonicallyOrderedAdd
instIsEmptyFalse
divisorsAntidiagonalList_one πŸ“–mathematicalβ€”divisorsAntidiagonalListβ€”β€”
divisorsAntidiagonalList_zero πŸ“–mathematicalβ€”divisorsAntidiagonalListβ€”β€”
divisorsAntidiagonal_eq_prod_filter_of_le πŸ“–mathematicalβ€”divisorsAntidiagonal
Finset.filter
SProd.sprod
Finset
Finset.instSProd
Finset.Ioc
instPreorder
instLocallyFiniteOrder
β€”Finset.ext
mem_divisorsAntidiagonal
Mathlib.Tactic.GCongr.and_right_mono
le_imp_le_of_le_of_le
le_refl
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
IsOrderedRing.toMulPosMono
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
divisorsAntidiagonal_one πŸ“–mathematicalβ€”divisorsAntidiagonal
Finset
Finset.instSingleton
β€”Finset.ext
Unique.instSubsingleton
divisorsAntidiagonal_zero πŸ“–mathematicalβ€”divisorsAntidiagonal
Finset
Finset.instEmptyCollection
β€”Finset.ext
IsDomain.to_noZeroDivisors
instIsDomain
divisors_eq_empty πŸ“–mathematicalβ€”divisors
Finset
Finset.instEmptyCollection
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
nonempty_divisors
divisors_filter_dvd_of_dvd πŸ“–mathematicalβ€”Finset.filter
divisors
β€”Finset.ext
ne_zero_of_dvd_ne_zero
Dvd.dvd.trans
divisors_inj πŸ“–mathematicalβ€”divisorsβ€”divisors_injective
divisors_injective πŸ“–mathematicalβ€”Finset
divisors
β€”instCommutativeMax_mathlib
instAssociativeMax_mathlib
sup_divisors_id
divisors_one πŸ“–mathematicalβ€”divisors
Finset
Finset.instSingleton
β€”Finset.ext
divisors_prime_pow πŸ“–mathematicalPrimedivisors
Monoid.toNatPow
instMonoid
Finset.map
pow_right_injective
Prime.two_le
Finset.range
β€”Finset.ext
pow_right_injective
Prime.two_le
mem_divisors_prime_pow
instNoMaxOrder
divisors_subset_of_dvd πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
divisors
β€”Finset.subset_iff
mem_divisors
Dvd.dvd.trans
divisors_subset_properDivisors πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
divisors
properDivisors
β€”Finset.subset_iff
mem_properDivisors
Dvd.dvd.trans
mem_divisors
lt_of_le_of_lt
divisor_le
lt_of_le_of_ne
divisors_zero πŸ“–mathematicalβ€”divisors
Finset
Finset.instEmptyCollection
β€”Finset.ext
dvd_of_mem_divisors πŸ“–β€”Finset
Finset.instMembership
divisors
β€”β€”mem_divisors
eq_properDivisors_of_subset_of_sum_eq_sum πŸ“–β€”Finset
Finset.instHasSubset
properDivisors
Finset.sum
instAddCommMonoid
β€”β€”Finset.sum_congr
Finset.subset_empty
properDivisors_zero
Finset.sum_sdiff
Finset.Subset.antisymm
Finset.sdiff_eq_empty_iff_subset
Mathlib.Tactic.Contrapose.contrapose₁
zero_add
add_assoc
add_zero
add_lt_add_left
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Finset.sum_lt_sum_of_nonempty
instIsOrderedCancelAddMonoid
pos_of_mem_properDivisors
Finset.sdiff_subset
Finset.sum_const_zero
filter_dvd_eq_divisors πŸ“–mathematicalβ€”Finset.filter
Finset.range
divisors
β€”Finset.ext
Ne.bot_lt
filter_dvd_eq_properDivisors πŸ“–mathematicalβ€”Finset.filter
Finset.range
properDivisors
β€”Finset.ext
Ne.bot_lt
fst_mem_divisors_of_mem_antidiagonal πŸ“–mathematicalFinset
Finset.instMembership
divisorsAntidiagonal
divisorsβ€”Dvd.intro
mem_divisorsAntidiagonal
image_div_divisors_eq_divisors πŸ“–mathematicalβ€”Finset.image
divisors
β€”divisors_zero
Finset.ext
Finset.mem_image
mem_divisors
image_fst_divisorsAntidiagonal πŸ“–mathematicalβ€”Finset.image
divisorsAntidiagonal
divisors
β€”Finset.ext
image_snd_divisorsAntidiagonal πŸ“–mathematicalβ€”Finset.image
divisorsAntidiagonal
divisors
β€”map_swap_divisorsAntidiagonal
Finset.map_eq_image
Finset.image_image
image_fst_divisorsAntidiagonal
insert_self_properDivisors πŸ“–mathematicalβ€”Finset
Finset.instInsert
properDivisors
divisors
β€”divisors.eq_1
properDivisors.eq_1
Finset.insert_Ico_right_eq_Ico_add_one
instNoMaxOrder
Finset.filter_insert
dvd_refl
left_ne_zero_of_mem_divisorsAntidiagonal πŸ“–β€”Finset
Finset.instMembership
divisorsAntidiagonal
β€”β€”ne_zero_of_mem_divisorsAntidiagonal
map_div_left_divisors πŸ“–mathematicalβ€”Finset.map
divisors
divisorsAntidiagonal
β€”Finset.map_injective
Finset.ext
map_swap_divisorsAntidiagonal
map_div_right_divisors
Finset.map_map
map_div_right_divisors πŸ“–mathematicalβ€”Finset.map
divisors
divisorsAntidiagonal
β€”Finset.ext
Ne.bot_lt
left_ne_zero_of_mul
dvd_mul_right
map_swap_divisorsAntidiagonal πŸ“–mathematicalβ€”Finset.map
Equiv.toEmbedding
Equiv.prodComm
divisorsAntidiagonal
β€”Finset.coe_map
Equiv.coe_toEmbedding
Equiv.coe_prodComm
Set.image_swap_eq_preimage_swap
Set.ext
swap_mem_divisorsAntidiagonal
mem_divisors πŸ“–mathematicalβ€”Finset
Finset.instMembership
divisors
β€”eq_or_ne
Finset.filter.congr_simp
zero_add
Finset.Ico_eq_empty_of_le
Finset.filter_empty
filter_dvd_eq_divisors
Ne.bot_lt
mem_divisorsAntidiagonal πŸ“–mathematicalβ€”Finset
Finset.instMembership
divisorsAntidiagonal
β€”Finset.filterMap.congr_simp
mul_ne_zero_iff
IsDomain.to_noZeroDivisors
instIsDomain
mul_div_cancel_leftβ‚€
instMulDivCancelClass
Ne.bot_lt
mem_divisorsAntidiagonalList πŸ“–mathematicalβ€”divisorsAntidiagonalListβ€”List.mem_toFinset
toFinset_divisorsAntidiagonalList
mem_divisorsAntidiagonal
mem_divisors_prime_pow πŸ“–mathematicalPrimeFinset
Finset.instMembership
divisors
Monoid.toNatPow
instMonoid
β€”mem_divisors
dvd_prime_pow
pow_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
instZeroLEOneClass
Prime.pos
mem_divisors_self πŸ“–mathematicalβ€”Finset
Finset.instMembership
divisors
β€”mem_divisors
dvd_rfl
mem_properDivisors πŸ“–mathematicalβ€”Finset
Finset.instMembership
properDivisors
β€”eq_or_ne
Finset.filter.congr_simp
Finset.Ico_eq_empty_of_le
instCanonicallyOrderedAdd
Finset.filter_empty
filter_dvd_eq_properDivisors
mem_properDivisors_iff_exists πŸ“–mathematicalβ€”Finset
Finset.instMembership
properDivisors
β€”one_lt_div_of_mem_properDivisors
mem_properDivisors
lt_mul_of_one_lt_right
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
mul_ne_zero_iff
IsDomain.to_noZeroDivisors
instIsDomain
mem_properDivisors_prime_pow πŸ“–mathematicalPrimeFinset
Finset.instMembership
properDivisors
Monoid.toNatPow
instMonoid
β€”mem_properDivisors
dvd_prime_pow
Prime.one_lt
ne_zero_of_mem_divisors πŸ“–β€”Finset
Finset.instMembership
divisors
β€”β€”mem_divisors
ne_zero_of_mem_divisorsAntidiagonal πŸ“–β€”Finset
Finset.instMembership
divisorsAntidiagonal
β€”β€”mem_divisorsAntidiagonal
mul_ne_zero_iff
IsDomain.to_noZeroDivisors
instIsDomain
nodup_divisorsAntidiagonalList πŸ“–mathematicalβ€”divisorsAntidiagonalListβ€”List.Pairwise.nodup
pairwise_divisorsAntidiagonalList_fst
nonempty_divisors πŸ“–mathematicalβ€”Finset.Nonempty
divisors
β€”divisors_zero
one_mem_divisors
nonempty_properDivisors πŸ“–mathematicalβ€”Finset.Nonempty
properDivisors
β€”one_lt_of_mem_properDivisors
one_mem_properDivisors_iff_one_lt
one_lt_div_of_mem_properDivisors πŸ“–β€”Finset
Finset.instMembership
properDivisors
β€”β€”mem_properDivisors
mul_one
one_lt_of_mem_properDivisors πŸ“–β€”Finset
Finset.instMembership
properDivisors
β€”β€”lt_of_le_of_lt
pos_of_mem_properDivisors
mem_properDivisors
one_mem_divisors πŸ“–mathematicalβ€”Finset
Finset.instMembership
divisors
β€”Unique.instSubsingleton
one_mem_properDivisors_iff_one_lt πŸ“–mathematicalβ€”Finset
Finset.instMembership
properDivisors
β€”mem_properDivisors
one_dvd
pairwise_divisorsAntidiagonalList_fst πŸ“–mathematicalβ€”divisorsAntidiagonalListβ€”List.SortedLT.pairwise
List.sortedLT_range'
pairwise_divisorsAntidiagonalList_snd πŸ“–mathematicalβ€”divisorsAntidiagonalListβ€”eq_or_ne
List.SortedLT.pairwise
List.sortedLT_range'
perfect_iff_sum_divisors_eq_two_mul πŸ“–mathematicalβ€”Perfect
Finset.sum
instAddCommMonoid
divisors
β€”perfect_iff_sum_properDivisors
sum_divisors_eq_sum_properDivisors_add_self
instAtLeastTwoHAddOfNat
two_mul
add_right_cancel
AddRightCancelSemigroup.toIsRightCancelAdd
perfect_iff_sum_properDivisors πŸ“–mathematicalβ€”Perfect
Finset.sum
instAddCommMonoid
properDivisors
β€”β€”
pos_of_mem_divisors πŸ“–β€”Finset
Finset.instMembership
divisors
β€”β€”zero_dvd_iff
mem_divisors
pos_of_mem_properDivisors πŸ“–β€”Finset
Finset.instMembership
properDivisors
β€”β€”pos_of_mem_divisors
properDivisors_subset_divisors
primeFactors_eq_to_filter_divisors_prime πŸ“–mathematicalβ€”primeFactors
Finset.filter
Prime
decidablePrime
divisors
β€”β€”
primeFactors_filter_dvd_of_dvd πŸ“–mathematicalβ€”Finset.filter
primeFactors
β€”Finset.filter.congr_simp
primeFactors_eq_to_filter_divisors_prime
Finset.filter_comm
divisors_filter_dvd_of_dvd
prodMk_mem_divisorsAntidiag πŸ“–mathematicalβ€”Finset
Finset.instMembership
divisorsAntidiagonal
β€”β€”
prod_div_divisors πŸ“–mathematicalβ€”Finset.prod
divisors
β€”Finset.prod_congr
divisors_zero
Finset.prod_const
pow_zero
Finset.prod_image
mem_divisors
Finset.mem_coe
image_div_divisors_eq_divisors
prod_divisorsAntidiagonal πŸ“–mathematicalβ€”Finset.prod
divisorsAntidiagonal
divisors
β€”map_div_right_divisors
Finset.prod_map
prod_divisorsAntidiagonal' πŸ“–mathematicalβ€”Finset.prod
divisorsAntidiagonal
divisors
β€”map_swap_divisorsAntidiagonal
Finset.prod_map
prod_divisorsAntidiagonal
prod_divisors_prime_pow πŸ“–mathematicalPrimeFinset.prod
divisors
Monoid.toNatPow
instMonoid
Finset.range
β€”pow_right_injective
Prime.two_le
Finset.prod_congr
divisors_prime_pow
Finset.prod_map
prod_properDivisors_prime_pow πŸ“–mathematicalPrimeFinset.prod
properDivisors
Monoid.toNatPow
instMonoid
Finset.range
β€”pow_right_injective
Prime.two_le
Finset.prod_congr
properDivisors_prime_pow
Finset.prod_map
properDivisors_eq_empty πŸ“–mathematicalβ€”properDivisors
Finset
Finset.instEmptyCollection
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
nonempty_properDivisors
properDivisors_eq_singleton_one_iff_prime πŸ“–mathematicalβ€”properDivisors
Finset
Finset.instSingleton
Prime
β€”prime_def
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
instCanonicallyOrderedAdd
Finset.mem_singleton
mem_properDivisors
nonpos_iff_eq_zero
le_iff_eq_or_lt
Prime.properDivisors
properDivisors_one πŸ“–mathematicalβ€”properDivisors
Finset
Finset.instEmptyCollection
β€”properDivisors.eq_1
Finset.Ico_self
Finset.filter_empty
properDivisors_prime_pow πŸ“–mathematicalPrimeproperDivisors
Monoid.toNatPow
instMonoid
Finset.map
pow_right_injective
Prime.two_le
Finset.range
β€”Finset.ext
pow_right_injective
Prime.two_le
mem_properDivisors_prime_pow
mem_properDivisors
properDivisors_subset_divisors πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
properDivisors
divisors
β€”Finset.filter_subset_filter
Finset.Ico_subset_Ico_right
properDivisors_zero πŸ“–mathematicalβ€”properDivisors
Finset
Finset.instEmptyCollection
β€”Finset.ext
instCanonicallyOrderedAdd
reverse_divisorsAntidiagonalList πŸ“–mathematicalβ€”divisorsAntidiagonalListβ€”lt_asymm
List.Perm.eq_of_pairwise'
List.Pairwise.reverse
pairwise_divisorsAntidiagonalList_snd
pairwise_divisorsAntidiagonalList_fst
nodup_divisorsAntidiagonalList
List.Nodup.map
Prod.swap_injective
mul_comm
right_ne_zero_of_mem_divisorsAntidiagonal πŸ“–β€”Finset
Finset.instMembership
divisorsAntidiagonal
β€”β€”ne_zero_of_mem_divisorsAntidiagonal
self_notMem_properDivisors πŸ“–mathematicalβ€”Finset
Finset.instMembership
properDivisors
β€”β€”
snd_mem_divisors_of_mem_antidiagonal πŸ“–mathematicalFinset
Finset.instMembership
divisorsAntidiagonal
divisorsβ€”Dvd.intro_left
mem_divisorsAntidiagonal
sortedGT_map_snd_divisorsAntidiagonalList πŸ“–mathematicalβ€”List.SortedGT
instPreorder
divisorsAntidiagonalList
β€”List.Pairwise.sortedGT
pairwise_divisorsAntidiagonalList_snd
sortedLT_map_fst_divisorsAntidiagonalList πŸ“–mathematicalβ€”List.SortedLT
instPreorder
divisorsAntidiagonalList
β€”List.Pairwise.sortedLT
pairwise_divisorsAntidiagonalList_fst
sorted_divisorsAntidiagonalList_fst πŸ“–mathematicalβ€”divisorsAntidiagonalListβ€”pairwise_divisorsAntidiagonalList_fst
sorted_divisorsAntidiagonalList_snd πŸ“–mathematicalβ€”divisorsAntidiagonalListβ€”pairwise_divisorsAntidiagonalList_snd
sum_div_divisors πŸ“–mathematicalβ€”Finset.sum
divisors
β€”Finset.sum_congr
divisors_zero
Finset.sum_const
zero_nsmul
Finset.sum_image
mem_divisors
Finset.mem_coe
image_div_divisors_eq_divisors
sum_divisorsAntidiagonal πŸ“–mathematicalβ€”Finset.sum
divisorsAntidiagonal
divisors
β€”map_div_right_divisors
Finset.sum_map
sum_divisorsAntidiagonal' πŸ“–mathematicalβ€”Finset.sum
divisorsAntidiagonal
divisors
β€”map_swap_divisorsAntidiagonal
Finset.sum_map
sum_divisorsAntidiagonal
sum_divisors_eq_sum_properDivisors_add_self πŸ“–mathematicalβ€”Finset.sum
instAddCommMonoid
divisors
properDivisors
β€”Decidable.eq_or_ne
Finset.sum_congr
divisors_zero
properDivisors_zero
add_zero
self_notMem_properDivisors
cons_self_properDivisors
Finset.sum_cons
add_comm
sum_divisors_prime_pow πŸ“–mathematicalPrimeFinset.sum
divisors
Monoid.toNatPow
instMonoid
Finset.range
β€”pow_right_injective
Prime.two_le
Finset.sum_congr
divisors_prime_pow
Finset.sum_map
sum_properDivisors_dvd πŸ“–β€”Finset.sum
instAddCommMonoid
properDivisors
β€”β€”Finset.sum_congr
properDivisors_zero
zero_add
properDivisors_one
lt_of_le_of_ne
Finset.mem_singleton
eq_properDivisors_of_subset_of_sum_eq_sum
Finset.singleton_subset_iff
mem_properDivisors
Finset.sum_singleton
one_dvd
sum_properDivisors_eq_one_iff_prime πŸ“–mathematicalβ€”Finset.sum
instAddCommMonoid
properDivisors
Prime
β€”Finset.sum_congr
properDivisors_zero
zero_add
properDivisors_one
properDivisors_eq_singleton_one_iff_prime
eq_properDivisors_of_subset_of_sum_eq_sum
Finset.singleton_subset_iff
one_mem_properDivisors_iff_one_lt
Finset.sum_singleton
sum_properDivisors_prime_nsmul πŸ“–mathematicalPrimeFinset.sum
properDivisors
Monoid.toNatPow
instMonoid
Finset.range
β€”pow_right_injective
Prime.two_le
Finset.sum_congr
properDivisors_prime_pow
Finset.sum_map
sup_divisors_id πŸ“–mathematicalβ€”Finset.sup
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeNat
instOrderBot
divisors
β€”le_antisymm
Finset.sup_le
divisor_le
Decidable.eq_or_ne
Finset.le_sup
mem_divisors_self
swap_mem_divisorsAntidiagonal πŸ“–mathematicalβ€”Finset
Finset.instMembership
divisorsAntidiagonal
β€”mem_divisorsAntidiagonal
mul_comm
Prod.swap.eq_1
swap_mem_divisorsAntidiagonalList πŸ“–mathematicalβ€”divisorsAntidiagonalListβ€”mul_comm
toFinset_divisorsAntidiagonalList πŸ“–mathematicalβ€”List.toFinset
divisorsAntidiagonalList
divisorsAntidiagonal
β€”divisorsAntidiagonalList.eq_1
divisorsAntidiagonal.eq_1
List.toFinset_filterMap
List.toFinset_range'_1_1
val_divisorsAntidiagonal πŸ“–mathematicalβ€”Finset.val
divisorsAntidiagonal
Multiset.ofList
divisorsAntidiagonalList
β€”β€”

Nat.Prime

Theorems

NameKindAssumesProvesValidatesDepends On
divisors πŸ“–mathematicalNat.PrimeNat.divisors
Finset
Finset.instInsert
Finset.instSingleton
β€”Finset.ext
Nat.mem_divisors
Nat.dvd_prime
ne_zero
Finset.mem_insert
Finset.mem_singleton
prod_divisors πŸ“–mathematicalNat.PrimeFinset.prod
Nat.divisors
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”Nat.self_notMem_properDivisors
Nat.cons_self_properDivisors
ne_zero
Finset.prod_cons
prod_properDivisors
prod_properDivisors πŸ“–mathematicalNat.PrimeFinset.prod
Nat.properDivisors
β€”Finset.prod_congr
properDivisors
Finset.prod_singleton
properDivisors πŸ“–mathematicalNat.PrimeNat.properDivisors
Finset
Finset.instSingleton
β€”Finset.erase_insert
Nat.self_notMem_properDivisors
Nat.insert_self_properDivisors
ne_zero
divisors
Finset.pair_comm
ne_one
Finset.mem_singleton
sum_divisors πŸ“–mathematicalNat.PrimeFinset.sum
Nat.divisors
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”Nat.self_notMem_properDivisors
Nat.cons_self_properDivisors
ne_zero
Finset.sum_cons
sum_properDivisors
sum_properDivisors πŸ“–mathematicalNat.PrimeFinset.sum
Nat.properDivisors
β€”Finset.sum_congr
properDivisors
Finset.sum_singleton

---

← Back to Index