Documentation Verification Report

DirichletLSeries

πŸ“ Source: Mathlib/NumberTheory/EulerProduct/DirichletLSeries.lean

Statistics

MetricCount
DefinitionsdirichletSummandHom, riemannZetaSummandHom
2
TheoremsLSeries_zeta_eulerProduct_exp_log, LSeries_changeLevel, LSeries_eulerProduct, LSeries_eulerProduct_exp_log, LSeries_eulerProduct_hasProd, LSeries_eulerProduct_tprod, riemannZeta_eulerProduct, riemannZeta_eulerProduct_exp_log, riemannZeta_eulerProduct_hasProd, riemannZeta_eulerProduct_tprod, summable_dirichletSummand, summable_riemannZetaSummand, tsum_dirichletSummand, tsum_riemannZetaSummand
14
Total16

ArithmeticFunction

Theorems

NameKindAssumesProvesValidatesDepends On
LSeries_zeta_eulerProduct_exp_log πŸ“–mathematicalReal
Real.instLT
Real.instOne
Complex.re
Complex.exp
tsum
Complex
Nat.Primes
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Complex.instNeg
Complex.log
Complex.instSub
Complex.instOne
Complex.instPow
Complex.instNatCast
Nat.Prime
SummationFilter.unconditional
LSeries
Pi.instOne
β€”MulChar.one_apply
isUnit_of_subsingleton
Unique.instSubsingleton
one_mul
DirichletCharacter.LSeries_eulerProduct_exp_log
DirichletCharacter.modOne_eq_one

DirichletCharacter

Theorems

NameKindAssumesProvesValidatesDepends On
LSeries_changeLevel πŸ“–mathematicalReal
Real.instLT
Real.instOne
Complex.re
LSeries
DFunLike.coe
DirichletCharacter
Complex
CommGroupWithZero.toCommMonoidWithZero
Semifield.toCommGroupWithZero
Field.toSemifield
Complex.instField
ZMod
MulChar.instFunLike
CommRing.toCommMonoid
ZMod.commRing
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
MonoidHom.instFunLike
changeLevel
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Complex.instMul
Finset.prod
Complex.commRing
Nat.primeFactors
Complex.instSub
Complex.instOne
Complex.instPow
Complex.instNatCast
Complex.instNeg
β€”prod_eq_tprod_mulIndicator
SummationFilter.instLeAtTopUnconditional
LSeries_eulerProduct_tprod
tprod_subtype
Multipliable.tprod_mul
Complex.instT2Space
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
SummationFilter.instNeBotUnconditional
multipliable_subtype_iff_mulIndicator
HasProd.multipliable
LSeries_eulerProduct_hasProd
Multipliable.of_finite
Finite.of_fintype
SummationFilter.instHasSupportOfLeAtTop
Set.mulIndicator_apply
mul_ite
ite_mul
one_mul
mul_one
ZMod.isUnit_prime_iff_not_dvd
MulChar.map_nonunit
MulZeroClass.zero_mul
sub_zero
inv_one
inv_mul_cancelβ‚€
sub_ne_zero
norm_mul
NormedDivisionRing.toNormMulClass
NormOneClass.norm_one
NormedDivisionRing.to_normOneClass
norm_le_one
Nat.instAtLeastTwoHAddOfNat
Complex.norm_prime_cpow_le_one_half
LT.lt.ne
LE.le.trans_lt
mul_le_mul
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
norm_nonneg
zero_le_one
Real.instZeroLEOneClass
Mathlib.Meta.NormNum.isNNRat_lt_true
Real.instIsStrictOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.instAtLeastTwo
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
Complex.instCharZero
Nat.Prime.ne_zero
changeLevel_eq_cast_of_dvd
IsUnit.unit_spec
ZMod.cast_natCast
ZMod.charP
LSeries_eulerProduct πŸ“–mathematicalReal
Real.instLT
Real.instOne
Complex.re
Filter.Tendsto
Complex
Finset.prod
CommRing.toCommMonoid
Complex.commRing
Nat.primesBelow
Complex.instInv
Complex.instSub
Complex.instOne
Complex.instMul
DFunLike.coe
DirichletCharacter
CommGroupWithZero.toCommMonoidWithZero
Semifield.toCommGroupWithZero
Field.toSemifield
Complex.instField
ZMod
MulChar.instFunLike
ZMod.commRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Complex.instPow
Complex.instNatCast
Complex.instNeg
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
LSeries
β€”Complex.ne_zero_of_one_lt_re
tsum_dirichletSummand
EulerProduct.eulerProduct_completely_multiplicative
Complex.instCompleteSpace
summable_dirichletSummand
LSeries_eulerProduct_exp_log πŸ“–mathematicalReal
Real.instLT
Real.instOne
Complex.re
Complex.exp
tsum
Complex
Nat.Primes
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Complex.instNeg
Complex.log
Complex.instSub
Complex.instOne
Complex.instMul
DFunLike.coe
DirichletCharacter
CommGroupWithZero.toCommMonoidWithZero
Semifield.toCommGroupWithZero
Field.toSemifield
Complex.instField
ZMod
MulChar.instFunLike
CommRing.toCommMonoid
ZMod.commRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.Prime
Complex.instPow
Complex.instNatCast
SummationFilter.unconditional
LSeries
β€”Complex.ne_zero_of_one_lt_re
eq_or_ne
map_zero
MonoidWithZeroHomClass.toZeroHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
LSeries.term_of_ne_zero
div_eq_mul_inv
Complex.cpow_neg
EulerProduct.exp_tsum_primes_log_eq_tsum
summable_dirichletSummand
LSeries_eulerProduct_hasProd πŸ“–mathematicalReal
Real.instLT
Real.instOne
Complex.re
HasProd
Complex
Nat.Primes
CommRing.toCommMonoid
Complex.commRing
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instInv
Complex.instSub
Complex.instOne
Complex.instMul
DFunLike.coe
DirichletCharacter
CommGroupWithZero.toCommMonoidWithZero
Semifield.toCommGroupWithZero
Field.toSemifield
Complex.instField
ZMod
MulChar.instFunLike
ZMod.commRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.Prime
Complex.instPow
Complex.instNatCast
Complex.instNeg
LSeries
SummationFilter.unconditional
β€”Complex.ne_zero_of_one_lt_re
tsum_dirichletSummand
EulerProduct.eulerProduct_completely_multiplicative_hasProd
Complex.instCompleteSpace
summable_dirichletSummand
LSeries_eulerProduct_tprod πŸ“–mathematicalReal
Real.instLT
Real.instOne
Complex.re
tprod
Complex
Nat.Primes
CommRing.toCommMonoid
Complex.commRing
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instInv
Complex.instSub
Complex.instOne
Complex.instMul
DFunLike.coe
DirichletCharacter
CommGroupWithZero.toCommMonoidWithZero
Semifield.toCommGroupWithZero
Field.toSemifield
Complex.instField
ZMod
MulChar.instFunLike
ZMod.commRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.Prime
Complex.instPow
Complex.instNatCast
Complex.instNeg
SummationFilter.unconditional
LSeries
β€”HasProd.tprod_eq
Complex.instT2Space
SummationFilter.instNeBotUnconditional
LSeries_eulerProduct_hasProd

(root)

Definitions

NameCategoryTheorems
dirichletSummandHom πŸ“–CompOp
2 mathmath: summable_dirichletSummand, tsum_dirichletSummand
riemannZetaSummandHom πŸ“–CompOp
2 mathmath: summable_riemannZetaSummand, tsum_riemannZetaSummand

Theorems

NameKindAssumesProvesValidatesDepends On
riemannZeta_eulerProduct πŸ“–mathematicalReal
Real.instLT
Real.instOne
Complex.re
Filter.Tendsto
Complex
Finset.prod
CommRing.toCommMonoid
Complex.commRing
Nat.primesBelow
Complex.instInv
Complex.instSub
Complex.instOne
Complex.instPow
Complex.instNatCast
Complex.instNeg
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
riemannZeta
β€”Complex.ne_zero_of_one_lt_re
tsum_riemannZetaSummand
EulerProduct.eulerProduct_completely_multiplicative
Complex.instCompleteSpace
summable_riemannZetaSummand
riemannZeta_eulerProduct_exp_log πŸ“–mathematicalReal
Real.instLT
Real.instOne
Complex.re
Complex.exp
tsum
Complex
Nat.Primes
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Complex.instNeg
Complex.log
Complex.instSub
Complex.instOne
Complex.instPow
Complex.instNatCast
Nat.Prime
SummationFilter.unconditional
riemannZeta
β€”ArithmeticFunction.LSeries_zeta_eulerProduct_exp_log
LSeries_one_eq_riemannZeta
riemannZeta_eulerProduct_hasProd πŸ“–mathematicalReal
Real.instLT
Real.instOne
Complex.re
HasProd
Complex
Nat.Primes
CommRing.toCommMonoid
Complex.commRing
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instInv
Complex.instSub
Complex.instOne
Complex.instPow
Complex.instNatCast
Nat.Prime
Complex.instNeg
riemannZeta
SummationFilter.unconditional
β€”Complex.ne_zero_of_one_lt_re
tsum_riemannZetaSummand
EulerProduct.eulerProduct_completely_multiplicative_hasProd
Complex.instCompleteSpace
summable_riemannZetaSummand
riemannZeta_eulerProduct_tprod πŸ“–mathematicalReal
Real.instLT
Real.instOne
Complex.re
tprod
Complex
Nat.Primes
CommRing.toCommMonoid
Complex.commRing
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instInv
Complex.instSub
Complex.instOne
Complex.instPow
Complex.instNatCast
Nat.Prime
Complex.instNeg
SummationFilter.unconditional
riemannZeta
β€”HasProd.tprod_eq
Complex.instT2Space
SummationFilter.instNeBotUnconditional
riemannZeta_eulerProduct_hasProd
summable_dirichletSummand πŸ“–mathematicalReal
Real.instLT
Real.instOne
Complex.re
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Norm.norm
Complex
Complex.instNorm
DFunLike.coe
MonoidWithZeroHom
Nat.instMulZeroOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Complex.instSemiring
MonoidWithZeroHom.funLike
dirichletSummandHom
Complex.ne_zero_of_one_lt_re
SummationFilter.unconditional
β€”Complex.ne_zero_of_one_lt_re
norm_mul
NormedDivisionRing.toNormMulClass
Summable.of_nonneg_of_le
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
norm_nonneg
mul_le_of_le_one_left
IsOrderedRing.toMulPosMono
DirichletCharacter.norm_le_one
summable_riemannZetaSummand
summable_riemannZetaSummand πŸ“–mathematicalReal
Real.instLT
Real.instOne
Complex.re
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Norm.norm
Complex
Complex.instNorm
DFunLike.coe
MonoidWithZeroHom
Nat.instMulZeroOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Complex.instSemiring
MonoidWithZeroHom.funLike
riemannZetaSummandHom
Complex.ne_zero_of_one_lt_re
SummationFilter.unconditional
β€”Complex.ne_zero_of_one_lt_re
Complex.ofReal_natCast
Complex.norm_cpow_eq_rpow_re_of_nonneg
Nat.cast_nonneg
Real.instIsOrderedRing
Complex.re_neg_ne_zero_of_one_lt_re
Complex.neg_re
Real.rpow_neg
Real.summable_nat_rpow_inv
tsum_dirichletSummand πŸ“–mathematicalReal
Real.instLT
Real.instOne
Complex.re
tsum
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
DFunLike.coe
MonoidWithZeroHom
Nat.instMulZeroOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Complex.instSemiring
MonoidWithZeroHom.funLike
dirichletSummandHom
Complex.ne_zero_of_one_lt_re
SummationFilter.unconditional
LSeries
DirichletCharacter
CommGroupWithZero.toCommMonoidWithZero
Semifield.toCommGroupWithZero
Field.toSemifield
Complex.instField
ZMod
MulChar.instFunLike
CommRing.toCommMonoid
ZMod.commRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”Complex.ne_zero_of_one_lt_re
Complex.cpow_neg
LSeries.term_of_ne_zero'
div_eq_mul_inv
tsum_riemannZetaSummand πŸ“–mathematicalReal
Real.instLT
Real.instOne
Complex.re
tsum
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
DFunLike.coe
MonoidWithZeroHom
Nat.instMulZeroOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Complex.instSemiring
MonoidWithZeroHom.funLike
riemannZetaSummandHom
Complex.ne_zero_of_one_lt_re
SummationFilter.unconditional
riemannZeta
β€”Complex.ne_zero_of_one_lt_re
summable_riemannZetaSummand
zeta_eq_tsum_one_div_nat_add_one_cpow
Summable.tsum_eq_zero_add
SeminormedAddCommGroup.toIsTopologicalAddGroup
Complex.instT2Space
Summable.of_norm
Complex.instCompleteSpace
map_zero
MonoidWithZeroHomClass.toZeroHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
zero_add
Complex.cpow_neg
Nat.cast_add
Nat.cast_one
one_div

---

← Back to Index