Documentation Verification Report

Basic

πŸ“ Source: Mathlib/NumberTheory/FLT/Basic.lean

Statistics

MetricCount
DefinitionsFermatLastTheorem, FermatLastTheoremFor, FermatLastTheoremWith, FermatLastTheoremWith'
4
Theoremsmono, fermatLastTheoremWith, fermatLastTheoremWith', mono, dvd_c_of_prime_of_dvd_a_of_dvd_b_of_FLT, fermatLastTheoremFor_iff_int, fermatLastTheoremFor_iff_nat, fermatLastTheoremFor_iff_rat, fermatLastTheoremFor_zero, fermatLastTheoremWith'_iff_fermatLastTheoremWith, fermatLastTheoremWith'_nat_int_tfae, fermatLastTheoremWith'_of_semifield, fermatLastTheoremWith_nat_int_rat_tfae, fermatLastTheoremWith_of_fermatLastTheoremWith_coprime, isCoprime_of_gcd_eq_one_of_FLT, not_fermatLastTheoremFor_one, not_fermatLastTheoremFor_two
17
Total21

FermatLastTheoremFor

Theorems

NameKindAssumesProvesValidatesDepends On
mono πŸ“–β€”FermatLastTheoremForβ€”β€”FermatLastTheoremWith.mono
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd

FermatLastTheoremWith

Theorems

NameKindAssumesProvesValidatesDepends On
fermatLastTheoremWith' πŸ“–mathematicalFermatLastTheoremWith
CommSemiring.toSemiring
FermatLastTheoremWith'β€”β€”
mono πŸ“–β€”FermatLastTheoremWithβ€”β€”pow_mul'
pow_ne_zero
isReduced_of_noZeroDivisors

FermatLastTheoremWith'

Theorems

NameKindAssumesProvesValidatesDepends On
fermatLastTheoremWith πŸ“–mathematicalFermatLastTheoremWith'FermatLastTheoremWith
CommSemiring.toSemiring
β€”mul_right_cancelβ‚€
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
pow_ne_zero
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
right_ne_zero_of_mul
add_mul
Distrib.rightDistribClass
mul_pow

(root)

Definitions

NameCategoryTheorems
FermatLastTheorem πŸ“–MathDef
1 mathmath: FermatLastTheorem.of_odd_primes
FermatLastTheoremFor πŸ“–MathDef
11 mathmath: not_fermatLastTheoremFor_one, fermatLastTheoremFor_iff_rat, fermatLastTheoremFor_zero, fermatLastTheoremThree, FermatLastTheoremForThree_of_FermatLastTheoremThreeGen, not_fermatLastTheoremFor_two, fermatLastTheoremFor_iff_int, fermatLastTheoremFour, fermatLastTheoremFor_iff_nat, fermatLastTheoremThree_of_three_dvd_only_c, fermatLastTheoremWith'_nat_int_tfae
FermatLastTheoremWith πŸ“–MathDef
7 mathmath: fermatLastTheoremFor_iff_rat, fermatLastTheoremWith'_iff_fermatLastTheoremWith, fermatLastTheoremFor_iff_int, fermatLastTheoremWith_nat_int_rat_tfae, fermatLastTheoremFor_iff_nat, fermatLastTheoremWith_of_fermatLastTheoremWith_coprime, FermatLastTheoremWith'.fermatLastTheoremWith
FermatLastTheoremWith' πŸ“–MathDef
5 mathmath: FermatLastTheoremWith.fermatLastTheoremWith', fermatLastTheoremWith'_iff_fermatLastTheoremWith, fermatLastTheoremWith'_polynomial, fermatLastTheoremWith'_of_semifield, fermatLastTheoremWith'_nat_int_tfae

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_c_of_prime_of_dvd_a_of_dvd_b_of_FLT πŸ“–β€”Prime
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
Monoid.toNatPow
Int.instMonoid
β€”β€”eq_or_ne
pow_zero
Int.instCharZero
Nat.instAtLeastTwoHAddOfNat
Prime.dvd_of_dvd_pow
dvd_neg
dvd_add
Distrib.leftDistribClass
dvd_pow
add_eq_zero_iff_eq_neg
fermatLastTheoremFor_iff_int πŸ“–mathematicalβ€”FermatLastTheoremFor
FermatLastTheoremWith
Int.instSemiring
β€”List.TFAE.out
fermatLastTheoremWith_nat_int_rat_tfae
fermatLastTheoremFor_iff_nat πŸ“–mathematicalβ€”FermatLastTheoremFor
FermatLastTheoremWith
Nat.instSemiring
β€”β€”
fermatLastTheoremFor_iff_rat πŸ“–mathematicalβ€”FermatLastTheoremFor
FermatLastTheoremWith
Rat.semiring
β€”List.TFAE.out
fermatLastTheoremWith_nat_int_rat_tfae
fermatLastTheoremFor_zero πŸ“–mathematicalβ€”FermatLastTheoremForβ€”pow_zero
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
fermatLastTheoremWith'_iff_fermatLastTheoremWith πŸ“–mathematicalβ€”FermatLastTheoremWith'
FermatLastTheoremWith
CommSemiring.toSemiring
β€”FermatLastTheoremWith'.fermatLastTheoremWith
FermatLastTheoremWith.fermatLastTheoremWith'
fermatLastTheoremWith'_nat_int_tfae πŸ“–mathematicalβ€”List.TFAE
FermatLastTheoremFor
FermatLastTheoremWith'
Nat.instCommSemiring
Int.instCommSemiring
β€”fermatLastTheoremWith'_iff_fermatLastTheoremWith
Nat.instIsDomain
one_pow
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
fermatLastTheoremFor_iff_int
Int.instIsDomain
pow_zero
Int.instCharZero
Int.isUnit_iff
isUnit_pow_iff
List.tfae_of_cycle
fermatLastTheoremWith'_of_semifield πŸ“–mathematicalβ€”FermatLastTheoremWith'
Semifield.toCommSemiring
β€”mul_one
Ne.isUnit
fermatLastTheoremWith_nat_int_rat_tfae πŸ“–mathematicalβ€”List.TFAE
FermatLastTheoremWith
Nat.instSemiring
Int.instSemiring
Rat.semiring
β€”Nat.even_or_odd
ne_of_gt
Nat.cast_add
Nat.cast_pow
Int.natCast_natAbs
Even.pow_abs
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
Ne.lt_or_gt
abs_of_neg
Int.instAddLeftMono
neg_pow
Distrib.leftDistribClass
LT.lt.not_gt
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
Eq.trans_lt
add_neg
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Odd.pow_neg
AddGroup.existsAddOfLE
Mathlib.Meta.Positivity.int_natAbs_pos
abs_of_pos
Odd.neg_pow
add_pos'
mul_ne_zero
IsStrictOrderedRing.noZeroDivisors
Rat.num_ne_zero
Nat.cast_pos'
Int.instZeroLEOneClass
mul_pos
Rat.instIsStrictOrderedRing
Rat.instAddLeftMono
Rat.instZeroLEOneClass
NeZero.one
Rat.nontrivial
Int.cast_injective
Rat.instCharZero
div_left_inj'
Int.cast_add
Int.cast_pow
Int.cast_mul
Int.cast_natCast
add_div
mul_div_mul_comm
Rat.num_div_den
div_self
mul_one
one_mul
Nat.cast_zero
List.tfae_of_cycle
fermatLastTheoremWith_of_fermatLastTheoremWith_coprime πŸ“–mathematicalβ€”FermatLastTheoremWith
CommSemiring.toSemiring
β€”Finset.gcd_dvd
IsDomain.to_noZeroDivisors
Finset.normalize_gcd
normalize_eq_one
normalize_associated
mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
normalize_eq_zero
Finset.gcd_mul_left
Finset.gcd_eq_gcd_image
Finset.image_insert
Finset.image_singleton
mul_right_inj'
pow_ne_zero
isReduced_of_noZeroDivisors
mul_add
Distrib.leftDistribClass
mul_pow
isCoprime_of_gcd_eq_one_of_FLT πŸ“–mathematicalFinset.gcd
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
Int.instNormalizedGCDMonoid
Finset
Finset.instInsert
Finset.instSingleton
Monoid.toNatPow
Int.instMonoid
IsCoprimeβ€”eq_or_ne
pow_zero
Int.instCharZero
Nat.instAtLeastTwoHAddOfNat
isCoprime_of_prime_dvd
Int.instIsDomain
EuclideanDomain.to_principal_ideal_domain
zero_pow
add_zero
zero_add
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Finset.insert_eq_of_mem
Finset.gcd_singleton
map_zero
MonoidWithZeroHomClass.toZeroHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
Prime.not_dvd_one
Finset.dvd_gcd_iff
dvd_c_of_prime_of_dvd_a_of_dvd_b_of_FLT
not_fermatLastTheoremFor_one πŸ“–mathematicalβ€”FermatLastTheoremForβ€”Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
one_pow
pow_one
not_fermatLastTheoremFor_two πŸ“–mathematicalβ€”FermatLastTheoremForβ€”Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat

---

← Back to Index