Documentation Verification Report

Four

📁 Source: Mathlib/NumberTheory/FLT/Four.lean

Statistics

MetricCount
DefinitionsFermat42
1
Theoremscomm, coprime_of_minimal, exists_minimal, exists_odd_minimal, exists_pos_odd_minimal, minimal_comm, mul, ne_zero, neg_of_minimal, not_minimal, of_odd_primes, isCoprime_of_sq_sum, isCoprime_of_sq_sum', fermatLastTheoremFour, not_fermat_42
15
Total16

Fermat42

Theorems

NameKindAssumesProvesValidatesDepends On
comm 📖mathematicalFermat42add_comm
coprime_of_minimal 📖mathematicalMinimalIsCoprime
Int.instCommSemiring
Int.isCoprime_iff_gcd_eq_one
Nat.Prime.not_coprime_iff_dvd
Int.natCast_dvd
two_ne_zero
Dvd.intro
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pf_right
mul
Nat.Prime.ne_zero
lt_mul_iff_one_lt_left
IsStrictOrderedRing.toMulPosStrictMono
Nat.instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
ne_zero
Nat.Prime.one_lt
exists_minimal 📖mathematicalFermat42MinimalSet.mem_setOf_eq
Nat.find_spec
Nat.find_min'
exists_odd_minimal 📖mathematicalFermat42Minimalexists_minimal
Int.emod_two_eq_zero_or_one
Int.isCoprime_iff_gcd_eq_one
coprime_of_minimal
minimal_comm
exists_pos_odd_minimal 📖mathematicalFermat42Minimalexists_odd_minimal
lt_trichotomy
ne_zero
neg_of_minimal
neg_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Int.instAddLeftMono
minimal_comm 📖Minimalcomm
mul 📖mathematicalFermat42
Monoid.toNatPow
Int.instMonoid
mul_ne_zero
IsStrictOrderedRing.noZeroDivisors
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.mul_const_eq
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
right_ne_zero_of_mul
mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
Int.instIsCancelMulZero
pow_ne_zero
isReduced_of_noZeroDivisors
ne_zero 📖Fermat42ne_zero_pow
two_ne_zero
ne_of_gt
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsNat.of_raw
add_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Int.instAddLeftMono
sq_pos_of_ne_zero
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
pow_ne_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
neg_of_minimal 📖Minimalneg_sq
not_minimal 📖MinimalMathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Int.isCoprime_iff_gcd_eq_one
IsCoprime.pow
coprime_of_minimal
sq
PythagoreanTriple.coprime_classification'
IsCoprime.of_mul_left_left
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.mul_one
IsCoprime.add_mul_right_left
IsCoprime.pow_left
pow_ne_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
lt_of_le_of_ne
Int.isCoprime_of_sq_sum'
Int.Prime.dvd_pow'
Nat.prime_two
mul_assoc
dvd_mul_right
mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
Int.instIsCancelMulZero
Int.instCharZero
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.LinearCombination.add_eq_eq
Mathlib.Tactic.LinearCombination.mul_const_eq
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Meta.NormNum.isNat_mul
Int.sq_of_gcd_eq_one
neg_nonpos
Int.instAddLeftMono
sq_nonneg
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
not_lt
mul_comm
mul_nonneg_iff_of_pos_right
IsStrictOrderedRing.toMulPosStrictMono
le_of_lt
lt_of_le_of_lt
Int.natAbs_le_self_sq
Int.le_self_sq
lt_add_of_pos_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
sq_pos_of_ne_zero
not_le_of_gt

FermatLastTheorem

Theorems

NameKindAssumesProvesValidatesDepends On
of_odd_primes 📖mathematicalFermatLastTheoremForFermatLastTheoremNat.four_dvd_or_exists_odd_prime_and_dvd_of_two_lt
FermatLastTheoremWith.mono
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
fermatLastTheoremFour

Int

Theorems

NameKindAssumesProvesValidatesDepends On
isCoprime_of_sq_sum 📖mathematicalIsCoprime
instCommSemiring
Monoid.toNatPow
instMonoid
sq
IsCoprime.mul_add_left_left
IsCoprime.mul_left
isCoprime_of_sq_sum' 📖mathematicalIsCoprime
instCommSemiring
Monoid.toNatPow
instMonoid
IsCoprime.mul_right
isCoprime_of_sq_sum
isCoprime_comm
add_comm

(root)

Definitions

NameCategoryTheorems
Fermat42 📖MathDef
2 mathmath: Fermat42.comm, Fermat42.mul

Theorems

NameKindAssumesProvesValidatesDepends On
fermatLastTheoremFour 📖mathematicalFermatLastTheoremForfermatLastTheoremFor_iff_int
not_fermat_42
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsNat.of_raw
not_fermat_42 📖Fermat42.exists_pos_odd_minimal
Fermat42.not_minimal

---

← Back to Index