Documentation Verification Report

MasonStothers

📁 Source: Mathlib/NumberTheory/FLT/MasonStothers.lean

Statistics

MetricCount
Definitions0
Theoremsabc
1
Total1

Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
abc 📖mathematicalIsCoprime
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
commSemiring
Semifield.toCommSemiring
instAdd
instZero
natDegree
UniqueFactorizationMonoid.radical
CommSemiring.toCommMonoidWithZero
instNormalizationMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsDomain.to_noZeroDivisors
instIsDomain
NormalizedGCDMonoid.toNormalizationMonoid
CommRing.toCommSemiring
CommGroupWithZero.instNormalizedGCDMonoid
Semifield.toCommGroupWithZero
PrincipalIdealRing.to_uniqueFactorizationMonoid
commRing
instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
AddGroup.toAddCancelMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
EuclideanDomain.to_principal_ideal_domain
instEuclideanDomain
instMul
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
add_eq_zero_iff_neg_eq
IsCoprime.neg_right_iff
mul_one
IsCoprime.add_mul_left_right
IsCoprime.symm
add_rotate
wronskian_eq_of_sum_zero
IsDomain.to_noZeroDivisors
instIsDomain
PrincipalIdealRing.to_uniqueFactorizationMonoid
instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
EuclideanDomain.to_principal_ideal_domain
divRadical_dvd_wronskian_left
divRadical_dvd_wronskian_right
EuclideanDomain.divRadical_mul
IsCoprime.mul_left
IsCoprime.mul_dvd
IsCoprime.divRadical
IsCoprime.wronskian_eq_zero_iff
mul_rotate

---

← Back to Index