Documentation Verification Report

FactorisationProperties

πŸ“ Source: Mathlib/NumberTheory/FactorisationProperties.lean

Statistics

MetricCount
DefinitionsAbundant, Deficient, Pseudoperfect, Weird, abundancyIndex, instDecidableAbundant, instDecidableDeficient, instDecidablePseudoperfect, instDecidableWeird
9
Theoremsdeficient, mul_left, of_dvd, pseudoperfect, deficient, deficient_pow, not_abundant, not_perfect, not_pseudoperfect, not_weird, abundancyIndex_le_of_dvd, abundant_iff_not_perfect_and_not_deficient, abundant_iff_sum_divisors, abundant_iff_two_lt_abundancyIndex, abundant_twelve, deficient_iff_not_abundant_and_not_perfect, deficient_one, deficient_or_perfect_or_abundant, deficient_three, deficient_two, infinite_deficient, infinite_even_abundant, infinite_even_deficient, infinite_odd_abundant, infinite_odd_deficient, not_abundant_zero, not_pseudoperfect_iff_forall, perfect_iff_not_abundant_and_not_deficient, weird_seventy
29
Total38

IsPrimePow

Theorems

NameKindAssumesProvesValidatesDepends On
deficient πŸ“–mathematicalIsPrimePow
Nat.instCommMonoidWithZero
Nat.Deficientβ€”Nat.Prime.deficient_pow
Prime.nat_prime

Nat

Definitions

NameCategoryTheorems
Abundant πŸ“–MathDef
11 mathmath: abundant_iff_not_perfect_and_not_deficient, not_abundant_zero, infinite_odd_abundant, infinite_even_abundant, abundant_iff_two_lt_abundancyIndex, Prime.not_abundant, deficient_or_perfect_or_abundant, deficient_iff_not_abundant_and_not_perfect, abundant_iff_sum_divisors, abundant_twelve, perfect_iff_not_abundant_and_not_deficient
Deficient πŸ“–MathDef
13 mathmath: abundant_iff_not_perfect_and_not_deficient, infinite_deficient, infinite_odd_deficient, deficient_three, deficient_one, infinite_even_deficient, deficient_or_perfect_or_abundant, deficient_iff_not_abundant_and_not_perfect, Prime.deficient_pow, Prime.deficient, perfect_iff_not_abundant_and_not_deficient, IsPrimePow.deficient, deficient_two
Pseudoperfect πŸ“–MathDef
3 mathmath: Perfect.pseudoperfect, not_pseudoperfect_iff_forall, Prime.not_pseudoperfect
Weird πŸ“–MathDef
2 mathmath: weird_seventy, Prime.not_weird
abundancyIndex πŸ“–CompOp
2 mathmath: abundant_iff_two_lt_abundancyIndex, abundancyIndex_le_of_dvd
instDecidableAbundant πŸ“–CompOpβ€”
instDecidableDeficient πŸ“–CompOpβ€”
instDecidablePseudoperfect πŸ“–CompOpβ€”
instDecidableWeird πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
abundancyIndex_le_of_dvd πŸ“–mathematicalβ€”abundancyIndexβ€”abundancyIndex.eq_1
cast_mul
div_mul_eq_div_div_swap
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Rat.instIsStrictOrderedRing
le_div_iffβ‚€
cast_le
Rat.instAddLeftMono
Rat.instZeroLEOneClass
Rat.instCharZero
Finset.sum_mul
Eq.trans_le
Finset.sum_image
Function.Injective.injOn
mul_left_injectiveβ‚€
IsCancelMulZero.toIsRightCancelMulZero
instIsCancelMulZero
Finset.sum_le_sum_of_subset
instCanonicallyOrderedAdd
cast_nonneg
IsStrictOrderedRing.toIsOrderedRing
abundant_iff_not_perfect_and_not_deficient πŸ“–mathematicalβ€”Abundant
Perfect
Deficient
β€”β€”
abundant_iff_sum_divisors πŸ“–mathematicalβ€”Abundant
Finset.sum
instAddCommMonoid
divisors
β€”β€”
abundant_iff_two_lt_abundancyIndex πŸ“–mathematicalβ€”Abundant
abundancyIndex
β€”Finset.sum_congr
properDivisors_zero
divisors_zero
cast_zero
div_zero
IsStrictOrderedRing.toIsOrderedRing
Rat.instIsStrictOrderedRing
instAtLeastTwoHAddOfNat
abundant_iff_sum_divisors
abundancyIndex.eq_1
lt_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
cast_pos'
Rat.instAddLeftMono
Rat.instZeroLEOneClass
NeZero.charZero_one
Rat.instCharZero
lt_of_le_of_ne'
zero_le
instCanonicallyOrderedAdd
abundant_twelve πŸ“–mathematicalβ€”Abundantβ€”β€”
deficient_iff_not_abundant_and_not_perfect πŸ“–mathematicalβ€”Deficient
Abundant
Perfect
β€”β€”
deficient_one πŸ“–mathematicalβ€”Deficientβ€”β€”
deficient_or_perfect_or_abundant πŸ“–mathematicalβ€”Deficient
Abundant
Perfect
β€”β€”
deficient_three πŸ“–mathematicalβ€”Deficientβ€”β€”
deficient_two πŸ“–mathematicalβ€”Deficientβ€”β€”
infinite_deficient πŸ“–mathematicalβ€”Set.Infinite
setOf
Deficient
β€”Set.infinite_iff_exists_gt
exists_infinite_primes
Prime.deficient
infinite_even_abundant πŸ“–mathematicalβ€”Set.Infinite
setOf
Even
Abundant
β€”Set.infinite_iff_exists_gt
infinite_even_deficient πŸ“–mathematicalβ€”Set.Infinite
setOf
Even
Deficient
β€”Set.infinite_iff_exists_gt
pow_succ
instAtLeastTwoHAddOfNat
mul_two
Prime.deficient_pow
prime_two
lt_add_one
instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
infinite_odd_abundant πŸ“–mathematicalβ€”Set.Infinite
setOf
Odd
instSemiring
Abundant
β€”Set.infinite_iff_exists_gt
infinite_odd_deficient πŸ“–mathematicalβ€”Set.Infinite
setOf
Odd
instSemiring
Deficient
β€”Set.infinite_iff_exists_gt
exists_infinite_primes
Set.mem_setOf
Prime.odd_of_ne_two
Prime.deficient
not_abundant_zero πŸ“–mathematicalβ€”Abundantβ€”β€”
not_pseudoperfect_iff_forall πŸ“–mathematicalβ€”Pseudoperfectβ€”β€”
perfect_iff_not_abundant_and_not_deficient πŸ“–mathematicalβ€”Perfect
Abundant
Deficient
β€”β€”
weird_seventy πŸ“–mathematicalβ€”Weirdβ€”β€”

Nat.Abundant

Theorems

NameKindAssumesProvesValidatesDepends On
mul_left πŸ“–β€”Nat.Abundantβ€”β€”mul_ne_zero
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
of_dvd
of_dvd πŸ“–β€”Nat.Abundantβ€”β€”Nat.abundancyIndex_le_of_dvd

Nat.Perfect

Theorems

NameKindAssumesProvesValidatesDepends On
pseudoperfect πŸ“–mathematicalNat.PerfectNat.Pseudoperfectβ€”β€”

Nat.Prime

Theorems

NameKindAssumesProvesValidatesDepends On
deficient πŸ“–mathematicalNat.PrimeNat.Deficientβ€”deficient_pow
pow_one
deficient_pow πŸ“–mathematicalNat.PrimeNat.Deficient
Monoid.toNatPow
Nat.instMonoid
β€”pow_zero
Nat.deficient_one
subset_antisymm
Finset.instAntisymmSubset
Nat.dvd_prime_pow
lt_of_le_of_ne
lt_irrefl
two_le
Finset.sum_image
pow_injective_of_not_isUnit
Nat.instIsCancelMulZero
Irreducible.not_isUnit
ne_zero
Nat.Deficient.eq_1
Nat.geomSum_eq
pow_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.instZeroLEOneClass
pos
not_abundant πŸ“–mathematicalNat.PrimeNat.Abundantβ€”LT.lt.ne'
LT.lt.trans
one_lt
Nat.sum_properDivisors_eq_one_iff_prime
not_perfect πŸ“–mathematicalNat.PrimeNat.Perfectβ€”not_pseudoperfect
not_imp_not
Nat.Perfect.pseudoperfect
not_pseudoperfect πŸ“–mathematicalNat.PrimeNat.Pseudoperfectβ€”properDivisors
Finset.sum_singleton
not_weird πŸ“–mathematicalNat.PrimeNat.Weirdβ€”β€”

---

← Back to Index