Documentation Verification Report

FrobeniusNumber

πŸ“ Source: Mathlib/NumberTheory/FrobeniusNumber.lean

Statistics

MetricCount
DefinitionsFrobeniusNumber, setGcd
2
TheoremsaddSubmonoid_fg, dvdNotUnit_setGcd_insert, dvd_setGcd_iff, exists_mem_closure_of_ge, exists_mem_span_nat_finset_of_ge, exists_ne_zero_of_setGcd_ne_zero, finite_setOf_setGcd_dvd_and_mem_span, instIsNoetherian, setGcd_dvd_of_mem, setGcd_dvd_of_mem_closure, setGcd_eq_zero_iff, setGcd_insert_of_dvd, setGcd_mono, span_singleton_setGcd, subset_span_setGcd, exists_frobeniusNumber_iff, frobeniusNumber_iff, frobeniusNumber_pair
18
Total20

Nat

Definitions

NameCategoryTheorems
setGcd πŸ“–CompOp
9 mathmath: subset_span_setGcd, setGcd_eq_zero_iff, setGcd_dvd_of_mem_closure, finite_setOf_setGcd_dvd_and_mem_span, exists_frobeniusNumber_iff, setGcd_dvd_of_mem, dvd_setGcd_iff, span_singleton_setGcd, setGcd_mono

Theorems

NameKindAssumesProvesValidatesDepends On
addSubmonoid_fg πŸ“–mathematicalβ€”AddSubmonoid.FG
instAddMonoid
β€”AddSubmonoid.toNatSubmodule_toAddSubmonoid
Submodule.fg_iff_addSubmonoid_fg
IsNoetherian.noetherian
instIsNoetherian
dvdNotUnit_setGcd_insert πŸ“–mathematicalsetGcdDvdNotUnit
instCommMonoidWithZero
Set
Set.instInsert
β€”dvdNotUnit_of_dvd_of_not_dvd
setGcd_mono
Set.subset_insert
dvd_setGcd_iff
Set.mem_insert
dvd_setGcd_iff πŸ“–mathematicalβ€”setGcdβ€”β€”
exists_mem_closure_of_ge πŸ“–mathematicalβ€”AddSubmonoid
AddMonoid.toAddZeroClass
instAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.closure
β€”exists_mem_span_nat_finset_of_ge
Eq.le
Submodule.span_nat_eq_addSubmonoidClosure
Submodule.span_mono
exists_mem_span_nat_finset_of_ge πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Ideal
instSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.span
β€”Finset.coe_empty
zero_dvd_iff
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
Submodule.mem_span_image_iff_exists_fun
Ideal.mem_span_singleton_self
span_singleton_setGcd
exists_ne_zero_of_setGcd_ne_zero
Finset.coe_insert
ExistsAddOfLE.exists_add_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
add_comm
add_assoc
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
Ideal.mul_mem_left
Ideal.subset_span
Finset.mem_insert_self
Submodule.span_mono
Finset.subset_insert
setGcd_dvd_of_mem
dvd_mul_of_dvd_right
Finset.dvd_sum
Finset.mul_sum
mul_comm
cast_add
cast_sum
cast_mul
Finset.sum_congr
Distrib.rightDistribClass
cast_zero
MulZeroClass.mul_zero
add_zero
Int.natCast_natAbs
abs_eq_self
Int.instIsOrderedAddMonoid
cast_sub
pos_of_ne_zero
LT.lt.le
abs_eq_neg_self
sub_mul
mul_neg
sub_neg_eq_add
sum_mem
exists_ne_zero_of_setGcd_ne_zero πŸ“–mathematicalβ€”Set
Set.instMembership
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
Mathlib.Tactic.Push.not_and_eq
setGcd_eq_zero_iff
finite_setOf_setGcd_dvd_and_mem_span πŸ“–mathematicalβ€”Set.Finite
setOf
setGcd
Ideal
instSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.span
β€”exists_mem_closure_of_ge
Set.Finite.subset
Finset.finite_toSet
Finset.mem_range
lt_of_not_ge
Eq.ge
Submodule.span_nat_eq_addSubmonoidClosure
instIsNoetherian πŸ“–mathematicalβ€”IsNoetherian
instSemiring
instAddCommMonoid
AddCommMonoid.toNatModule
β€”exists_mem_span_nat_finset_of_ge
LE.le.antisymm
Submodule.span_le
Finset.coe_union
Finset.coe_filter
le_or_gt
Submodule.span_mono
setGcd_dvd_of_mem
Submodule.subset_span
setGcd_dvd_of_mem πŸ“–mathematicalSet
Set.instMembership
setGcdβ€”setGcd.eq_1
Int.dvd_natCast
Submodule.IsPrincipal.mem_iff_generator_dvd
Ideal.subset_span
setGcd_dvd_of_mem_closure πŸ“–mathematicalAddSubmonoid
AddMonoid.toAddZeroClass
instAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.closure
setGcdβ€”AddSubmonoid.closure_induction
setGcd_dvd_of_mem
dvd_zero
dvd_add
Distrib.leftDistribClass
setGcd_eq_zero_iff πŸ“–mathematicalβ€”setGcd
Set
Set.instHasSubset
Set.instSingletonSet
β€”β€”
setGcd_insert_of_dvd πŸ“–mathematicalsetGcdSet
Set.instInsert
β€”Dvd.dvd.antisymm
instIsCancelMulZero
Unique.instSubsingleton
setGcd_mono
Set.subset_insert
dvd_setGcd_iff
setGcd_dvd_of_mem
setGcd_mono πŸ“–mathematicalSet
Set.instHasSubset
setGcdβ€”dvd_setGcd_iff
setGcd_dvd_of_mem
span_singleton_setGcd πŸ“–mathematicalβ€”Ideal.span
Int.instSemiring
Set
Set.instSingletonSet
setGcd
Set.image
β€”setGcd.eq_1
Ideal.span_singleton_eq_span_singleton
Int.instIsDomain
Int.associated_natAbs
Ideal.span.eq_1
Submodule.IsPrincipal.span_singleton_generator
subset_span_setGcd πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
Ideal
instSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.span
Set.instSingletonSet
setGcd
β€”Ideal.mem_span_singleton
setGcd_dvd_of_mem

(root)

Definitions

NameCategoryTheorems
FrobeniusNumber πŸ“–MathDef
3 mathmath: frobeniusNumber_pair, frobeniusNumber_iff, exists_frobeniusNumber_iff

Theorems

NameKindAssumesProvesValidatesDepends On
exists_frobeniusNumber_iff πŸ“–mathematicalβ€”FrobeniusNumber
Nat.setGcd
Set
Set.instMembership
β€”Nat.setGcd_dvd_of_mem_closure
frobeniusNumber_iff
AddSubmonoid.closure_mono
Set.singleton_subset_iff
Eq.ge
Nat.addSubmonoidClosure_one
Nat.exists_mem_closure_of_ge
Nat.one_mem_closure_iff
Nat.findGreatest_spec
le_of_not_gt
LT.lt.le
Eq.dvd
le_total
of_not_not
Nat.findGreatest_is_greatest
Dvd.dvd.trans
one_dvd
frobeniusNumber_iff πŸ“–mathematicalβ€”FrobeniusNumber
AddSubmonoid
AddMonoid.toAddZeroClass
Nat.instAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.closure
β€”β€”
frobeniusNumber_pair πŸ“–mathematicalβ€”FrobeniusNumber
Set
Set.instInsert
Set.instSingletonSet
β€”add_le_mul
Nat.instZeroLEOneClass
IsStrictOrderedRing.toMulPosStrictMono
Nat.instIsStrictOrderedRing
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.Coprime.mul_add_mul_ne_mul
Nat.cast_add
Nat.cast_mul
Nat.cast_one
sub_eq_zero
Nat.cast_sub
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Nat.chineseRemainder_lt_mul
ne_bot_of_gt
Nat.ModEq.le_of_lt_add
lt_of_le_of_lt
le_tsub_of_add_le_left
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.ModEq.trans
Nat.ModEq.symm
Nat.modEq_zero_iff_dvd
dvd_mul_right
dvd_rfl
lt_of_lt_of_le
le_tsub_add
add_lt_add_left
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Nat.modEq_iff_dvd'
mul_comm

---

← Back to Index