Documentation Verification Report

GaussSum

πŸ“ Source: Mathlib/NumberTheory/GaussSum.lean

Statistics

MetricCount
DefinitionsgaussSum
1
Theoremscard_pow_card, card_pow_char_pow, two_pow_card, gaussSum_frob, gaussSum_frob_iter, gaussSum_frob, gaussSum_mul, gaussSum_mulShift, gaussSum_mul_gaussSum_eq_card, gaussSum_mul_gaussSum_pow_orderOf_sub_one, gaussSum_ne_zero_of_nontrivial, gaussSum_sq, mul_gaussSum_inv_eq_gaussSum
13
Total14

Char

Theorems

NameKindAssumesProvesValidatesDepends On
card_pow_card πŸ“–mathematicalMulChar.IsQuadratic
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
MulChar
CommGroupWithZero.toCommMonoidWithZero
Semifield.toCommGroupWithZero
MulChar.instFunLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddMonoidWithOne.toNatCast
Fintype.card
β€”FiniteField.card
ringChar.charP
Finite.of_fintype
Algebra.ringChar_eq
IsLocalRing.toNontrivial
Field.instIsLocalRing
RingHom.injective
DivisionRing.isSimpleRing
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_natCast
Nat.cast_pow
card_pow_char_pow
instIsDomain
MulChar.IsQuadratic.comp
isUnit_iff_not_dvd_char
Nat.prime_dvd_prime_iff_eq
gaussSum_sq
MulChar.ringHomComp_ne_one_iff
AddChar.PrimitiveAddChar.prim
card_pow_char_pow πŸ“–mathematicalMulChar.IsQuadratic
CommRing.toCommMonoid
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Monoid.toNatPow
gaussSum
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
MulChar
CommSemiring.toCommMonoidWithZero
MulChar.instFunLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
Fintype.card
Nat.instMonoidβ€”not_isUnit_prime_of_dvd_card
CharP.cast_eq_zero_iff
mul_eq_zero
IsDomain.to_noZeroDivisors
zero_pow
two_ne_zero
IsUnit.ne_zero
IsDomain.toNontrivial
IsUnit.map
MulCharClass.toMonoidHomClass
MulChar.instMulCharClass
IsUnit.neg
isUnit_one
mul_right_cancelβ‚€
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
MulChar.IsQuadratic.gaussSum_frob_iter
pow_mul
pow_succ
Nat.two_mul_div_two_add_one_of_odd
Odd.pow
Nat.Prime.eq_two_or_odd'
Fact.out

FiniteField

Theorems

NameKindAssumesProvesValidatesDepends On
two_pow_card πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Nat.instAtLeastTwoHAddOfNat
Fintype.card
AddGroupWithOne.toIntCast
DFunLike.coe
MulChar
ZMod
CommRing.toCommMonoid
ZMod.commRing
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
ZMod.Ο‡β‚ˆ
CommRing.toRing
β€”Nat.instAtLeastTwoHAddOfNat
pow_ne_zero
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
Ring.two_ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
card
ringChar.charP
Algebra.ringChar_eq
isUnit_iff_not_dvd_char
Finite.of_fintype
ZMod.ringChar_zmod_n
Nat.Prime.dvd_of_dvd_pow
Nat.prime_dvd_prime_iff_eq
Nat.prime_two
sq_eq_one_iff
pow_mul
AddChar.map_nsmul_eq_pow
AddChar.IsPrimitive.zmod_char_eq_one_iff
NeZero.pnat
AddChar.PrimitiveAddChar.prim
Int.cast_one
MulChar.IsQuadratic.comp
ZMod.isQuadratic_Ο‡β‚ˆ
pow_one
gaussSum.eq_1
Fin.sum_univ_eight
Int.cast_zero
MulZeroClass.zero_mul
one_mul
zero_add
add_zero
Int.cast_neg
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.mul_const_eq
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
ZMod.card
Nat.cast_ofNat
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Meta.NormNum.isNat_mul
Char.card_pow_char_pow
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
mul_pow
isSquare_iff
pow_two
RingHom.injective
DivisionRing.isSimpleRing
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_ofNat
map_intCast
Nat.cast_pow

MulChar.IsQuadratic

Theorems

NameKindAssumesProvesValidatesDepends On
gaussSum_frob πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
MulChar.IsQuadratic
CommRing.toCommMonoid
Monoid.toNatPow
gaussSum
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
MulChar
CommSemiring.toCommMonoidWithZero
MulChar.instFunLike
β€”gaussSum_frob
AddChar.pow_mulShift
pow_char
gaussSum_mulShift
mul_assoc
IsUnit.unit_spec
pow_two
MulChar.pow_apply'
two_ne_zero
sq_eq_one
MulChar.one_apply_coe
one_mul
gaussSum_frob_iter πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
MulChar.IsQuadratic
CommRing.toCommMonoid
Monoid.toNatPow
gaussSum
Nat.instMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
MulChar
CommSemiring.toCommMonoidWithZero
MulChar.instFunLike
β€”pow_zero
pow_one
MulChar.map_one
one_mul
pow_succ
pow_mul
mul_pow
gaussSum_frob
mul_assoc
map_mul
MonoidHomClass.toMulHomClass
MulCharClass.toMonoidHomClass
MulChar.instMulCharClass
MulChar.pow_apply'
Nat.Prime.ne_zero
Fact.out
pow_char

(root)

Definitions

NameCategoryTheorems
gaussSum πŸ“–CompOp
18 mathmath: jacobiSum_mul_nontrivial, gaussSum_mul, gaussSum_frob, mul_gaussSum_inv_eq_gaussSum, gaussSum_aux_of_mulShift, gaussSum_mulShift_of_isPrimitive, MulChar.IsQuadratic.gaussSum_frob_iter, jacobiSum_eq_gaussSum_mul_gaussSum_div_gaussSum, DirichletCharacter.IsPrimitive.fourierTransform_eq_inv_mul_gaussSum, gaussSum_pow_eq_prod_jacobiSum_aux, gaussSum_mul_gaussSum_pow_orderOf_sub_one, MulChar.IsQuadratic.gaussSum_frob, gaussSum_pow_eq_prod_jacobiSum, gaussSum_eq_zero_of_isPrimitive_of_not_isPrimitive, DirichletCharacter.fourierTransform_eq_gaussSum_mulShift, gaussSum_mul_gaussSum_eq_card, gaussSum_sq, gaussSum_mulShift

Theorems

NameKindAssumesProvesValidatesDepends On
gaussSum_frob πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
gaussSum
MulChar
CommRing.toCommMonoid
CommSemiring.toCommMonoidWithZero
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
AddChar
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
AddChar.instCommGroup
Ring.toAddCommGroup
β€”expChar_prime
frobenius_def
gaussSum.eq_1
map_sum
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
Finset.sum_congr
MulChar.pow_apply'
Nat.Prime.ne_zero
Fact.out
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
gaussSum_mul πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
gaussSum
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.univ
DFunLike.coe
MulChar
CommRing.toCommMonoid
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
MulChar.instFunLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
AddChar
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
AddChar.instFunLike
β€”gaussSum.eq_1
Finset.sum_mul_sum
mul_mul_mul_comm
Finset.sum_congr
AddChar.map_add_eq_mul
Finset.sum_bij
AddTorsor.nonempty
AddRightCancelSemigroup.toIsRightCancelAdd
Finset.mem_univ
sub_add_cancel
add_sub_cancel_right
add_comm
Finset.sum_comm
gaussSum_mulShift πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
MulChar
CommRing.toCommMonoid
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
MulChar.instFunLike
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
gaussSum
AddChar.mulShift
CommRing.toRing
β€”Finset.sum_congr
Finset.mul_sum
MonoidHomClass.toMulHomClass
MulCharClass.toMonoidHomClass
MulChar.instMulCharClass
Fintype.sum_bijective
Units.mulLeft_bijective
gaussSum_mul_gaussSum_eq_card πŸ“–mathematicalAddChar.IsPrimitive
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
gaussSum
MulChar
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
MulChar.hasInv
AddChar
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
AddChar.instCommGroup
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
AddMonoidWithOne.toNatCast
Fintype.card
β€”Finset.sum_congr
MulChar.inv_apply'
Finset.mul_sum
Finset.sum_mul
mul_mul_mul_comm
map_mul
MonoidHomClass.toMulHomClass
MulCharClass.toMonoidHomClass
MulChar.instMulCharClass
AddChar.map_add_eq_mul
sub_eq_add_neg
Finset.sum_comm
AddChar.sum_mulShift
Nat.cast_zero
MulZeroClass.mul_zero
Finset.sum_ite_eq'
map_one
MonoidHomClass.toOneHomClass
one_mul
gaussSum_mul_gaussSum_pow_orderOf_sub_one πŸ“–mathematicalAddChar.IsPrimitive
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
gaussSum
MulChar
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
orderOf
DFunLike.coe
MulChar.instFunLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddMonoidWithOne.toNatCast
CommRing.toRing
Fintype.card
β€”inv_eq_of_mul_eq_one_right
pow_succ'
MulChar.orderOf_pos
instFiniteUnits
Finite.of_fintype
pow_orderOf_eq_one
mul_gaussSum_inv_eq_gaussSum
mul_left_comm
gaussSum_mul_gaussSum_eq_card
MulChar.inv_apply'
inv_neg_one
gaussSum_ne_zero_of_nontrivial πŸ“–β€”AddChar.IsPrimitive
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toCommMonoid
β€”β€”gaussSum_mul_gaussSum_eq_card
MulZeroClass.zero_mul
gaussSum_sq πŸ“–mathematicalMulChar.IsQuadratic
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AddChar.IsPrimitive
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
gaussSum
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
MulChar
CommSemiring.toCommMonoidWithZero
MulChar.instFunLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddMonoidWithOne.toNatCast
CommRing.toRing
Fintype.card
β€”pow_two
gaussSum_mul_gaussSum_eq_card
MulChar.IsQuadratic.inv
mul_rotate'
mul_comm
gaussSum_mulShift
AddChar.inv_mulShift
mul_gaussSum_inv_eq_gaussSum πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
MulChar
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
MulChar.instFunLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
gaussSum
AddChar
AddMonoidWithOne.toAddMonoid
CommRing.toRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
AddChar.instCommGroup
β€”AddChar.inv_mulShift
Units.coe_neg_one
gaussSum_mulShift

---

← Back to Index