📁 Source: Mathlib/NumberTheory/Harmonic/Int.lean
harmonic_not_int
harmonic_pos
padicNorm_two_harmonic
padicValRat_two_harmonic
harmonic
padicNorm.not_int_of_not_padic_int
Nat.fact_prime_two
padicNorm.eq_zpow_of_nonzero
LT.lt.ne'
ne_zero_of_lt
neg_neg
zpow_natCast
one_lt_pow₀
Rat.instZeroLEOneClass
Rat.instPosMulMono
one_lt_two
NeZero.charZero_one
Rat.instCharZero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Rat.instAddLeftMono
Nat.instAtLeastTwoHAddOfNat
Nat.log_pos
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Finset.sum_pos
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Rat.instIsStrictOrderedRing
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Nat.cast_pos'
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
zero_le
Nat.instCanonicallyOrderedAdd
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Finset.nonempty_range_iff
Norm.norm
Padic
Padic.instNorm
DivisionRing.toRatCast
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
Padic.normedField
Real
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.log
Padic.eq_padicNorm
Rat.cast_pow
Rat.cast_natCast
Nat.cast_ofNat
padicValRat
padicValRat.zero
Nat.log_zero_right
Nat.cast_zero
neg_zero
eq_or_ne
zero_add
harmonic_succ
Nat.cast_one
inv_one
padicValRat.one
Nat.log_one_right
padicValRat.inv
padicValRat.of_nat
Int.instCharZero
Nat.log_ne_padicValNat_succ
padicValRat.add_eq_min
inv_ne_zero
Nat.cast_ne_zero
min_neg_neg
Int.instIsOrderedAddMonoid
Nat.cast_max
Int.instIsStrictOrderedRing
Nat.max_log_padicValNat_succ_eq_log_succ
---
← Back to Index