Documentation Verification Report

Basic

πŸ“ Source: Mathlib/NumberTheory/JacobiSum/Basic.lean

Statistics

MetricCount
DefinitionsjacobiSum
1
Theoremsexists_jacobiSum_eq_neg_one_add, gaussSum_pow_eq_prod_jacobiSum, gaussSum_pow_eq_prod_jacobiSum_aux, jacobiSum_comm, jacobiSum_eq_gaussSum_mul_gaussSum_div_gaussSum, jacobiSum_eq_sum_sdiff, jacobiSum_mem_algebraAdjoin_of_pow_eq_one, jacobiSum_mul_jacobiSum_inv, jacobiSum_mul_nontrivial, jacobiSum_nontrivial_inv, jacobiSum_one_nontrivial, jacobiSum_one_one, jacobiSum_ringHomComp, jacobiSum_trivial_trivial
14
Total15

(root)

Definitions

NameCategoryTheorems
jacobiSum πŸ“–CompOp
14 mathmath: jacobiSum_mem_algebraAdjoin_of_pow_eq_one, jacobiSum_mul_nontrivial, jacobiSum_trivial_trivial, jacobiSum_one_nontrivial, exists_jacobiSum_eq_neg_one_add, jacobiSum_eq_gaussSum_mul_gaussSum_div_gaussSum, gaussSum_pow_eq_prod_jacobiSum_aux, jacobiSum_nontrivial_inv, jacobiSum_comm, gaussSum_pow_eq_prod_jacobiSum, jacobiSum_eq_sum_sdiff, jacobiSum_mul_jacobiSum_inv, jacobiSum_ringHomComp, jacobiSum_one_one

Theorems

NameKindAssumesProvesValidatesDepends On
exists_jacobiSum_eq_neg_one_add πŸ“–mathematicalMulChar
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
MulChar.hasOne
Fintype.card
IsPrimitiveRoot
Subalgebra
Int.instCommSemiring
CommSemiring.toSemiring
Ring.toIntAlgebra
CommRing.toRing
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set
Set.instSingletonSet
jacobiSum
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Distrib.toMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
β€”IsPrimitiveRoot.self_sub_one_pow_dvd_order
Nat.instAtLeastTwoHAddOfNat
jacobiSum_one_one
Subalgebra.mul_mem
Subalgebra.natCast_mem
NeZero.one_le
Fintype.instNeZeroNatCardOfNonempty
Nontrivial.to_nonempty
IsLocalRing.toNontrivial
Field.instIsLocalRing
Nat.cast_add
Nat.cast_mul
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.pow_zero
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.neg_congr
Subalgebra.zero_mem
jacobiSum_one_nontrivial
MulZeroClass.zero_mul
add_zero
jacobiSum_comm
MulChar.sum_eq_zero_of_ne_one
Finite.of_fintype
Subalgebra.add_mem
Subalgebra.neg_mem
Subalgebra.sum_mem
Finset.sum_mul
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.neg_mul
gaussSum_pow_eq_prod_jacobiSum πŸ“–mathematicalorderOf
MulChar
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
AddChar.IsPrimitive
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
gaussSum
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
MulChar.instFunLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddMonoidWithOne.toNatCast
CommRing.toRing
Fintype.card
Finset.prod
Finset.Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
jacobiSum
β€”gaussSum_pow_eq_prod_jacobiSum_aux
LT.lt.false
LE.le.trans_lt
orderOf_one
pow_succ'
mul_assoc
gaussSum_mul_gaussSum_pow_orderOf_sub_one
gaussSum_pow_eq_prod_jacobiSum_aux πŸ“–mathematicalorderOf
MulChar
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
gaussSum
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.prod
Finset.Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
jacobiSum
β€”Nat.le_induction
pow_one
Finset.prod_congr
Finset.Ico_eq_empty_of_le
mul_one
pow_ne_one_of_lt_orderOf
pow_succ'
mul_comm
jacobiSum_mul_nontrivial
pow_succ
mul_right_comm
lt_trans
Finset.prod_Ico_succ_top
mul_rotate
mul_assoc
jacobiSum_comm πŸ“–mathematicalβ€”jacobiSumβ€”Finset.sum_congr
mul_comm
Equiv.sum_comp
sub_sub_cancel
jacobiSum_eq_gaussSum_mul_gaussSum_div_gaussSum πŸ“–mathematicalAddChar.IsPrimitive
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toCommMonoid
jacobiSum
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
gaussSum
MulChar
CommGroupWithZero.toCommMonoidWithZero
Semifield.toCommGroupWithZero
Field.toSemifield
MulChar.hasMul
β€”eq_div_iff
gaussSum_ne_zero_of_nontrivial
instIsDomain
mul_comm
jacobiSum_mul_nontrivial
jacobiSum_eq_sum_sdiff πŸ“–mathematicalβ€”jacobiSum
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset
Finset.instSDiff
Finset.univ
Finset.instInsert
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Finset.instSingleton
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
DFunLike.coe
MulChar
CommRing.toCommMonoid
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
MulChar.instFunLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
β€”Finset.sum_congr
sub_eq_add_neg
Finset.sum_sdiff_eq_sub
AddLeftCancelSemigroup.toIsLeftCancelAdd
Finset.sum_eq_zero
MulChar.map_zero
neg_zero
add_zero
map_one
MonoidHomClass.toOneHomClass
MulCharClass.toMonoidHomClass
MulChar.instMulCharClass
mul_one
add_neg_cancel
MulZeroClass.mul_zero
jacobiSum_mem_algebraAdjoin_of_pow_eq_one πŸ“–mathematicalMulChar
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
MulChar.hasOne
IsPrimitiveRoot
Subalgebra
Int.instCommSemiring
CommSemiring.toSemiring
Ring.toIntAlgebra
CommRing.toRing
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set
Set.instSingletonSet
jacobiSum
β€”Subalgebra.sum_mem
Subalgebra.mul_mem
MulChar.apply_mem_algebraAdjoin_of_pow_eq_one
Finite.of_fintype
jacobiSum_mul_jacobiSum_inv πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
jacobiSum
MulChar
CommRing.toCommMonoid
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
MulChar.hasInv
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Fintype.card
β€”FiniteField.card
ringChar.charP
Finite.of_fintype
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
jacobiSum_ringHomComp
MulChar.ringHomComp_mul
MulChar.ringHomComp_ne_one_iff
mul_inv
inv_ne_one
Algebra.ringChar_eq
CharP.ringChar_of_prime_eq_zero
Nat.cast_pow
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
Eq.trans_ne
gaussSum_mul_gaussSum_eq_card
AddChar.PrimitiveAddChar.prim
mul_right_injectiveβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
mul_mul_mul_comm
jacobiSum_mul_nontrivial
MulChar.ringHomComp_inv
map_natCast
jacobiSum_mul_nontrivial πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
gaussSum
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MulChar
CommRing.toCommMonoid
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
MulChar.hasMul
jacobiSum
β€”gaussSum_mul
Finset.sum_eq_sum_diff_singleton_add
Finset.mem_univ
zero_sub
neg_eq_neg_one_mul
map_mul
MonoidHomClass.toMulHomClass
MulCharClass.toMonoidHomClass
MulChar.instMulCharClass
mul_left_comm
MulChar.mul_apply
AddChar.map_zero_eq_one
mul_one
Finset.mul_sum
MulChar.sum_eq_zero_of_ne_one
MulZeroClass.mul_zero
add_zero
Equiv.sum_comp
Finset.sum_congr
mul_assoc
mul_comm
mul_right_comm
jacobiSum.eq_1
Finset.sum_mul
gaussSum.eq_1
MulChar.map_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
MulZeroClass.zero_mul
jacobiSum_nontrivial_inv πŸ“–mathematicalβ€”jacobiSum
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MulChar
CommRing.toCommMonoid
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
MulChar.hasInv
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
DFunLike.coe
MulChar.instFunLike
DivisionRing.toRing
Field.toDivisionRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”jacobiSum.eq_1
MulChar.inv_apply'
map_mul
MonoidHomClass.toMulHomClass
MulCharClass.toMonoidHomClass
MulChar.instMulCharClass
div_eq_mul_inv
Finset.sum_eq_sum_diff_singleton_add
Finset.mem_univ
sub_self
div_zero
MulChar.map_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
add_zero
Finset.sum_bij'
div_eq_iff
sub_ne_zero
mul_sub
mul_one
neg_one_mul
sub_neg_eq_add
right_eq_add
AddRightCancelSemigroup.toIsRightCancelAdd
neg_eq_zero
one_ne_zero
NeZero.one
eq_neg_of_add_eq_zero_right
one_mul
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
div_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
sub_eq_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.div_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
sub_add_cancel
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
GroupWithZero.toNontrivial
neg_eq_iff_eq_neg
add_sub_cancel_right
add_eq_zero_iff_eq_neg
MulChar.sum_eq_zero_of_ne_one
jacobiSum_one_nontrivial πŸ“–mathematicalβ€”jacobiSum
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MulChar
CommRing.toCommMonoid
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
MulChar.hasOne
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”Finset.sum_eq_zero
MulChar.one_apply
sub_self
MulZeroClass.zero_mul
IsLocalRing.toNontrivial
Field.instIsLocalRing
MulChar.sum_one_eq_card_units
MulChar.sum_eq_zero_of_ne_one
add_zero
Fintype.card_eq_card_units_add_one
Nat.cast_add
Nat.cast_one
sub_add_cancel_left
jacobiSum_one_one πŸ“–mathematicalβ€”jacobiSum
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MulChar
CommRing.toCommMonoid
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
MulChar.hasOne
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Fintype.card
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
β€”jacobiSum_trivial_trivial
jacobiSum_ringHomComp πŸ“–mathematicalβ€”jacobiSum
MulChar.ringHomComp
CommRing.toCommMonoid
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
β€”Finset.sum_congr
map_sum
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
jacobiSum_trivial_trivial πŸ“–mathematicalβ€”jacobiSum
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MulChar.trivial
CommRing.toCommMonoid
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Fintype.card
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
jacobiSum_eq_sum_sdiff
IsLocalRing.toNontrivial
Field.instIsLocalRing
map_mul
MonoidHomClass.toMulHomClass
MulCharClass.toMonoidHomClass
MulChar.instMulCharClass
MulChar.trivial_apply
IsDomain.to_noZeroDivisors
instIsDomain
Finset.sum_congr
Finset.cast_card
Finset.card_sdiff_of_subset
Finset.subset_univ
Finset.card_univ
Finset.card_pair
zero_ne_one
NeZero.one
Nat.cast_sub
Fintype.one_lt_card
Nat.cast_two

---

← Back to Index