Documentation Verification Report

Basic

πŸ“ Source: Mathlib/NumberTheory/LSeries/Basic.lean

Statistics

MetricCount
DefinitionsLSeries, delta, termL, termδ, «term↗_», term, LSeriesHasSum, LSeriesSummable
8
Theoremsdelta_mul, delta_mul_eq_smul_delta, eq_zero_of_not_LSeriesSummable, mul_delta, mul_delta_eq_smul_delta, norm_term_eq, norm_term_le, norm_term_le_of_re_le_re, pow_mul_term_eq, term_congr, term_def, term_defβ‚€, term_delta, term_nonneg, term_of_ne_zero, term_of_ne_zero', term_pos, term_zero, LSeriesSummable, LSeries_eq, LSeriesHasSum_congr, LSeriesHasSum_iff, LSeriesHasSum, congr', isBigO_rpow, le_const_mul_rpow, of_re_le_re, LSeriesSummable_congr, LSeriesSummable_congr', LSeriesSummable_iff_of_re_eq_re, LSeriesSummable_of_bounded_of_one_lt_re, LSeriesSummable_of_bounded_of_one_lt_real, LSeriesSummable_of_isBigO_rpow, LSeriesSummable_of_le_const_mul_rpow, LSeriesSummable_zero, LSeries_congr, LSeries_delta, LSeries_zero
38
Total46

LSeries

Definitions

NameCategoryTheorems
delta πŸ“–CompOp
11 mathmath: DirichletCharacter.mul_delta, ArithmeticFunction.one_eq_delta, term_delta, LSeries_delta, mul_delta, mul_delta_eq_smul_delta, delta_mul, delta_mul_eq_smul_delta, DirichletCharacter.delta_mul, DirichletCharacter.convolution_mul_moebius, DirichletCharacter.modZero_eq_delta
term πŸ“–CompOp
26 mathmath: term_sum, term_convolution', term_congr, term_def, term_sub, term_of_ne_zero, term_nonneg, term_convolution, norm_term_eq, term_sub_apply, term_neg_apply, term_delta, term_add_apply, term_neg, term_of_ne_zero', term_add, term_smul_apply, term_pos, term_defβ‚€, term_sum_apply, pow_mul_term_eq, term_smul, norm_term_le, hasDerivAt_term, term_zero, norm_term_le_of_re_le_re

Theorems

NameKindAssumesProvesValidatesDepends On
delta_mul πŸ“–mathematicalComplex
Complex.instOne
Pi.instMul
Complex.instMul
delta
β€”mul_delta
mul_comm
delta_mul_eq_smul_delta πŸ“–mathematicalβ€”Pi.instMul
Complex
Complex.instMul
delta
Function.hasSMul
Algebra.toSMul
Complex.instCommSemiring
CommSemiring.toSemiring
Algebra.id
β€”mul_delta_eq_smul_delta
mul_comm
eq_zero_of_not_LSeriesSummable πŸ“–mathematicalLSeriesSummableLSeries
Complex
Complex.instZero
β€”tsum_eq_zero_of_not_summable
mul_delta πŸ“–mathematicalComplex
Complex.instOne
Pi.instMul
Complex.instMul
delta
β€”mul_delta_eq_smul_delta
one_smul
mul_delta_eq_smul_delta πŸ“–mathematicalβ€”Pi.instMul
Complex
Complex.instMul
delta
Function.hasSMul
Algebra.toSMul
Complex.instCommSemiring
CommSemiring.toSemiring
Algebra.id
β€”mul_one
MulZeroClass.mul_zero
norm_term_eq πŸ“–mathematicalβ€”Norm.norm
Complex
Complex.instNorm
term
Real
Real.instZero
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instPow
Real.instNatCast
Complex.re
β€”eq_or_ne
norm_zero
term_of_ne_zero
Complex.norm_div
Complex.norm_natCast_cpow_of_pos
norm_term_le πŸ“–mathematicalReal
Real.instLE
Norm.norm
Complex
Complex.instNorm
termβ€”norm_term_eq
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
le_of_lt
Real.rpow_pos_of_pos
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
lt_of_le_of_ne'
zero_le
Nat.instCanonicallyOrderedAdd
le_refl
norm_term_le_of_re_le_re πŸ“–mathematicalReal
Real.instLE
Complex.re
Norm.norm
Complex
Complex.instNorm
term
β€”norm_term_eq
div_le_divβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
norm_nonneg
le_refl
Real.rpow_pos_of_pos
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
lt_of_le_of_ne'
zero_le
Nat.instCanonicallyOrderedAdd
Real.rpow_le_rpow_of_exponent_le
Nat.one_le_cast
pow_mul_term_eq πŸ“–mathematicalβ€”Complex
Complex.instMul
Complex.instPow
Complex.instAdd
Complex.instNatCast
Complex.instOne
term
β€”Nat.cast_add
Nat.cast_one
mul_div_assoc'
mul_div_cancel_leftβ‚€
EuclideanDomain.toMulDivCancelClass
Complex.natCast_add_one_cpow_ne_zero
term_congr πŸ“–mathematicalβ€”termβ€”eq_or_ne
term_of_ne_zero
term_def πŸ“–mathematicalβ€”term
Complex
Complex.instZero
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instPow
Complex.instNatCast
β€”β€”
term_defβ‚€ πŸ“–mathematicalComplex
Complex.instZero
term
Complex.instMul
Complex.instPow
Complex.instNatCast
Complex.instNeg
β€”term.eq_1
CharP.cast_eq_zero
CharP.ofCharZero
Complex.instCharZero
Complex.cpow_neg
MulZeroClass.zero_mul
div_eq_inv_mul
mul_comm
term_delta πŸ“–mathematicalβ€”term
delta
Complex
Complex.instOne
Complex.instZero
β€”eq_or_ne
term_of_ne_zero
Nat.cast_one
Complex.one_cpow
div_self
NeZero.charZero_one
Complex.instCharZero
zero_div
term_nonneg πŸ“–mathematicalComplex
Preorder.toLE
PartialOrder.toPreorder
Complex.partialOrder
Complex.instZero
term
Complex.ofReal
β€”term_def
le_rfl
mul_nonneg
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
RCLike.toIsStrictOrderedRing
LT.lt.le
Complex.inv_natCast_cpow_ofReal_pos
term_of_ne_zero πŸ“–mathematicalβ€”term
Complex
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instPow
Complex.instNatCast
β€”β€”
term_of_ne_zero' πŸ“–mathematicalβ€”term
Complex
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instPow
Complex.instNatCast
β€”eq_or_ne
term_zero
Nat.cast_zero
Complex.zero_cpow
div_zero
term_of_ne_zero
term_pos πŸ“–mathematicalComplex
Preorder.toLT
PartialOrder.toPreorder
Complex.partialOrder
Complex.instZero
term
Complex.ofReal
β€”term_of_ne_zero
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
RCLike.toIsStrictOrderedRing
Complex.inv_natCast_cpow_ofReal_pos
term_zero πŸ“–mathematicalβ€”term
Complex
Complex.instZero
β€”β€”

LSeries.notation

Definitions

NameCategoryTheorems
termL πŸ“–CompOpβ€”
termΞ΄ πŸ“–CompOpβ€”
Β«termβ†—_Β» πŸ“–CompOpβ€”

LSeriesHasSum

Theorems

NameKindAssumesProvesValidatesDepends On
LSeriesSummable πŸ“–mathematicalLSeriesHasSumLSeriesSummableβ€”HasSum.summable
LSeries_eq πŸ“–mathematicalLSeriesHasSumLSeriesβ€”HasSum.tsum_eq
Complex.instT2Space
SummationFilter.instNeBotUnconditional

LSeriesSummable

Theorems

NameKindAssumesProvesValidatesDepends On
LSeriesHasSum πŸ“–mathematicalLSeriesSummableLSeriesHasSum
LSeries
β€”Summable.hasSum
congr' πŸ“–β€”Filter.EventuallyEq
Complex
Filter.atTop
Nat.instPreorder
LSeriesSummable
β€”β€”Summable.of_norm_bounded_eventually
Complex.instCompleteSpace
summable_norm_iff
Complex.instFiniteDimensionalReal
Filter.eventuallyEq_iff_exists_mem
Nat.cofinite_eq_atTop
Filter.diff_mem
Set.Finite.compl_mem_cofinite
Set.finite_singleton
LSeries.term_of_ne_zero
Set.mem_singleton_iff
Set.mem_diff
Filter.Eventually.mono
Filter.EventuallyEq.symm
isBigO_rpow πŸ“–mathematicalLSeriesSummableAsymptotics.IsBigO
Complex
Real
Complex.instNorm
Real.norm
Filter.atTop
Nat.instPreorder
Real.instPow
Real.instNatCast
Complex.re
β€”le_const_mul_rpow
Asymptotics.IsBigO.of_bound
Filter.eventually_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Real.norm_eq_abs
Real.abs_rpow_of_nonneg
Nat.cast_nonneg
Real.instIsOrderedRing
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
le_const_mul_rpow πŸ“–mathematicalLSeriesSummableReal
Real.instLE
Norm.norm
Complex
Complex.instNorm
Real.instMul
Real.instPow
Real.instNatCast
Complex.re
β€”Summable.norm
Complex.instFiniteDimensionalReal
Mathlib.Tactic.Push.not_forall_eq
Summable.le_tsum
Real.instIsOrderedAddMonoid
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
SummationFilter.instNeBotUnconditional
SummationFilter.instLeAtTopUnconditional
norm_nonneg
LT.lt.false
LE.le.trans_lt
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
Real.rpow_pos_of_pos
Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
LSeries.norm_term_eq
of_re_le_re πŸ“–β€”Real
Real.instLE
Complex.re
LSeriesSummable
β€”β€”eq_1
summable_norm_iff
Complex.instFiniteDimensionalReal
Summable.of_nonneg_of_le
norm_nonneg
LSeries.norm_term_le_of_re_le_re

(root)

Definitions

NameCategoryTheorems
LSeries πŸ“–CompOp
62 mathmath: DirichletCharacter.LSeries_eulerProduct_tprod, DirichletCharacter.LSeries_modOne_eq, LSeries_injOn, LSeries_eventually_eq_zero_iff', DirichletCharacter.LSeries_twist_vonMangoldt_eq, DirichletCharacter.LFunction_eq_LSeries, DirichletCharacter.norm_LSeries_product_ge_one, ArithmeticFunction.LSeries_zeta_mul_Lseries_moebius, LSeries_congr, DirichletCharacter.deriv_LFunction_eq_deriv_LSeries, LSeries_iteratedDeriv, ArithmeticFunction.LSeries_positive, ZMod.LFunction_eq_LSeries, LSeries_deriv_eqOn, LSeries_analyticOnNhd, LSeries_sub, LSeries_neg, LSeries_deriv, DirichletCharacter.LSeries_changeLevel, LSeries_smul, LSeries_eq_mul_integral_of_nonneg, ArithmeticFunction.LSeries_zeta_eq, DirichletCharacter.LSeries.mul_mu_eq_one, ArithmeticFunction.LSeries_vonMangoldt_eq_deriv_riemannZeta_div, LSeriesSummable.LSeriesHasSum, LSeries_convolution', ArithmeticFunction.LSeries_mul', LSeries_one_eq_riemannZeta, LSeries_eq_mul_integral, ArithmeticFunction.LSeries_vonMangoldt_eq, LSeries_tendsto_sub_mul_nhds_one_of_tendsto_sum_div_and_nonneg, LSeries_differentiableOn, LSeries_eq_iff_of_abscissaOfAbsConv_lt_top, LSeries_sum, LSeries.iteratedDeriv_alternating, LSeries_one_mul_Lseries_moebius, DirichletCharacter.LSeries_eulerProduct_hasProd, LSeries_add, LSeries_delta, tsum_dirichletSummand, ArithmeticFunction.LSeries_zeta_eq_riemannZeta, DirichletCharacter.LSeries_eulerProduct_exp_log, LSeries.tendsto_cpow_mul_atTop, ArithmeticFunction.vonMangoldt.LSeries_residueClass_eq, LSeries.positive, ArithmeticFunction.LSeries_mul, LSeries.tendsto_atTop, LSeries_zero, LSeries_analyticOn, ArithmeticFunction.LSeries_zeta_eulerProduct_exp_log, LSeries_eq_zero_of_abscissaOfAbsConv_eq_top, LSeriesHasSum.LSeries_eq, LSeries_hasDerivAt, ArithmeticFunction.iteratedDeriv_LSeries_alternating, LSeries.eq_zero_of_not_LSeriesSummable, DirichletCharacter.LSeries_eulerProduct, ArithmeticFunction.vonMangoldt.eqOn_LFunctionResidueClassAux, LSeries_eq_zero_iff, LSeries_eq_mul_integral', LSeries_tendsto_sub_mul_nhds_one_of_tendsto_sum_div, LSeries_convolution, LSeriesHasSum_iff
LSeriesHasSum πŸ“–MathDef
8 mathmath: HurwitzZeta.LSeriesHasSum_cos, LSeriesHasSum_congr, LSeriesSummable.LSeriesHasSum, HurwitzZeta.LSeriesHasSum_exp, LSeriesHasSum_one, ArithmeticFunction.LSeriesHasSum_zeta, HurwitzZeta.LSeriesHasSum_sin, LSeriesHasSum_iff
LSeriesSummable πŸ“–MathDef
28 mathmath: LSeriesSummable_of_le_const_mul_rpow, LSeriesSummable_congr', DirichletCharacter.LSeriesSummable_of_one_lt_re, ArithmeticFunction.not_LSeriesSummable_moebius_at_one, LSeriesSummable_of_bounded_of_one_lt_real, LSeriesSummable_zero, LSeriesSummable_congr, LSeriesSummable.neg_iff, LSeriesSummable_of_isBigO_rpow, DirichletCharacter.LSeriesSummable_twist_vonMangoldt, DirichletCharacter.LSeriesSummable_iff, LSeriesSummable.smul_iff, LSeriesSummable_of_abscissaOfAbsConv_lt_re, LSeriesSummable_of_bounded_of_one_lt_re, LSeriesSummable_iff_of_re_eq_re, LSeriesSummable_one_iff, LSeriesSummable_of_sum_norm_bigO, ZMod.LSeriesSummable_of_one_lt_re, ArithmeticFunction.LSeriesSummable_moebius_iff, LSeriesSummable_of_sum_norm_bigO_and_nonneg, ArithmeticFunction.LSeriesSummable_zeta_iff, LSeriesSummable_lt_re_of_abscissaOfAbsConv_lt_re, DirichletCharacter.not_LSeriesSummable_at_one, LSeriesHasSum.LSeriesSummable, ArithmeticFunction.LSeriesSummable_vonMangoldt, DirichletCharacter.LSeriesSummable_zetaMul, LSeriesSummable_logMul_of_lt_re, LSeriesHasSum_iff

Theorems

NameKindAssumesProvesValidatesDepends On
LSeriesHasSum_congr πŸ“–mathematicalβ€”LSeriesHasSumβ€”LSeriesSummable_congr
LSeries_congr
LSeriesHasSum_iff πŸ“–mathematicalβ€”LSeriesHasSum
LSeriesSummable
LSeries
β€”LSeriesHasSum.LSeriesSummable
LSeriesHasSum.LSeries_eq
LSeriesSummable.LSeriesHasSum
LSeriesSummable_congr πŸ“–mathematicalβ€”LSeriesSummableβ€”summable_congr
LSeries.term_congr
LSeriesSummable_congr' πŸ“–mathematicalFilter.EventuallyEq
Complex
Filter.atTop
Nat.instPreorder
LSeriesSummableβ€”LSeriesSummable.congr'
Filter.EventuallyEq.symm
LSeriesSummable_iff_of_re_eq_re πŸ“–mathematicalComplex.reLSeriesSummableβ€”LSeriesSummable.of_re_le_re
Eq.le
LSeriesSummable_of_bounded_of_one_lt_re πŸ“–mathematicalReal
Real.instLE
Norm.norm
Complex
Complex.instNorm
Real.instLT
Real.instOne
Complex.re
LSeriesSummableβ€”LSeriesSummable_of_le_const_mul_rpow
sub_self
Real.rpow_zero
mul_one
LSeriesSummable_of_bounded_of_one_lt_real πŸ“–mathematicalReal
Real.instLE
Norm.norm
Complex
Complex.instNorm
Real.instLT
Real.instOne
LSeriesSummable
Complex.ofReal
β€”LSeriesSummable_of_bounded_of_one_lt_re
LSeriesSummable_of_isBigO_rpow πŸ“–mathematicalReal
Real.instLT
Complex.re
Asymptotics.IsBigO
Complex
Complex.instNorm
Real.norm
Filter.atTop
Nat.instPreorder
Real.instPow
Real.instNatCast
Real.instSub
Real.instOne
LSeriesSummableβ€”Asymptotics.isBigO_iff
Filter.eventually_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Finset.insert_nonempty
LE.le.trans
Finset.mem_insert
Finset.le_max'
le_max_right
le_max_left
LSeriesSummable_of_le_const_mul_rpow
le_or_gt
Nat.cast_nonneg
Real.instIsOrderedRing
mul_le_mul
IsOrderedRing.toPosMulMono
IsOrderedRing.toMulPosMono
Real.norm_eq_abs
Real.abs_rpow_of_nonneg
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
le_refl
norm_nonneg
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
Real.rpow_pos_of_pos
Nat.cast_pos
Real.instNontrivial
Finset.mem_insert_of_mem
Finset.mem_image
Finset.mem_range
LSeriesSummable_of_le_const_mul_rpow πŸ“–mathematicalReal
Real.instLT
Complex.re
Real.instLE
Norm.norm
Complex
Complex.instNorm
Real.instMul
Real.instPow
Real.instNatCast
Real.instSub
Real.instOne
LSeriesSummableβ€”LE.le.trans
norm_nonneg
Nat.cast_one
Real.one_rpow
mul_one
one_ne_zero
div_eq_mul_inv
norm_mul
NormedDivisionRing.toNormMulClass
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Summable.mul_left
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Summable.of_norm_bounded_eventually_nat
Real.instCompleteSpace
norm_norm
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
le_of_eq
Complex.norm_natCast_cpow_of_pos
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.mul_neg
add_zero
Mathlib.Tactic.RingNF.add_assoc_rev
Mathlib.Tactic.RingNF.add_neg
Summable.of_norm
Complex.instCompleteSpace
Summable.of_nonneg_of_le
norm_zero
Real.rpow_pos_of_pos
Nat.cast_pos
Real.instNontrivial
LSeries.term_of_ne_zero
LT.lt.ne'
norm_div
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Complex.norm_real
Real.norm_of_nonneg
mul_assoc
Real.rpow_neg
Nat.cast_nonneg
Real.rpow_add
neg_add_rev
neg_sub
neg_add_cancel_right
LSeriesSummable_zero πŸ“–mathematicalβ€”LSeriesSummable
Pi.instZero
Complex
Complex.instZero
β€”LSeries.term_def
zero_div
LSeries_congr πŸ“–mathematicalβ€”LSeriesβ€”tsum_congr
LSeries.term_congr
LSeries_delta πŸ“–mathematicalβ€”LSeries
LSeries.delta
Pi.instOne
Complex
Complex.instOne
β€”LSeries.term_delta
tsum_ite_eq
SummationFilter.instLeAtTopUnconditional
LSeries_zero πŸ“–mathematicalβ€”LSeries
Pi.instZero
Complex
Complex.instZero
β€”zero_div
tsum_zero

---

← Back to Index