Documentation Verification Report

Convergence

📁 Source: Mathlib/NumberTheory/LSeries/Convergence.lean

Statistics

MetricCount
DefinitionsabscissaOfAbsConv
1
TheoremsabscissaOfAbsConv_binop_le, abscissaOfAbsConv_congr, abscissaOfAbsConv_congr', abscissaOfAbsConv_le_of_forall_lt_LSeriesSummable, abscissaOfAbsConv_le_of_forall_lt_LSeriesSummable', abscissaOfAbsConv_le_of_isBigO_rpow, abscissaOfAbsConv_le_of_le_const, abscissaOfAbsConv_le_of_le_const_mul_rpow, abscissaOfAbsConv_le_one_of_isBigO_one, summable_real_of_abscissaOfAbsConv_lt, abscissaOfAbsConv_le, LSeriesSummable_lt_re_of_abscissaOfAbsConv_lt_re, LSeriesSummable_of_abscissaOfAbsConv_lt_re
13
Total14

LSeries

Definitions

NameCategoryTheorems
abscissaOfAbsConv 📖CompOp
27 mathmath: abscissaOfAbsConv_one, LSeries_injOn, LSeries_eventually_eq_zero_iff', LSeriesSummable.abscissaOfAbsConv_le, ArithmeticFunction.abscissaOfAbsConv_zeta, abscissaOfAbsConv_congr, LSeries_deriv_eqOn, abscissaOfAbsConv_le_of_le_const, LSeries_analyticOnNhd, ArithmeticFunction.vonMangoldt.abscissaOfAbsConv_residueClass_le_one, abscissaOfAbsConv_congr', absicssaOfAbsConv_logPowMul, abscissaOfAbsConv_le_one_of_isBigO_one, abscissaOfAbsConv_le_of_forall_lt_LSeriesSummable, abscissaOfAbsConv_logMul, abscissaOfAbsConv_binop_le, abscissaOfAbsConv_add_le, abscissaOfAbsConv_le_of_forall_lt_LSeriesSummable', abscissaOfAbsConv_convolution_le, DirichletCharacter.absicssaOfAbsConv_eq_one, abscissaOfAbsConv_le_of_le_const_mul_rpow, LSeries_differentiableOn, LSeries_analyticOn, abscissaOfAbsConv_sub_le, LSeries_eq_zero_iff, abscissaOfAbsConv_le_of_isBigO_rpow, ArithmeticFunction.abscissaOfAbsConv_moebius

Theorems

NameKindAssumesProvesValidatesDepends On
abscissaOfAbsConv_binop_le 📖mathematicalLSeriesSummableEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
abscissaOfAbsConv
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderEReal
abscissaOfAbsConv_le_of_forall_lt_LSeriesSummable'
LSeriesSummable_of_abscissaOfAbsConv_lt_re
LE.le.trans_lt
le_max_left
Complex.ofReal_re
le_max_right
abscissaOfAbsConv_congr 📖mathematicalabscissaOfAbsConvSet.ext
LSeriesSummable_congr
abscissaOfAbsConv_congr' 📖mathematicalFilter.EventuallyEq
Complex
Filter.atTop
Nat.instPreorder
abscissaOfAbsConvSet.ext
LSeriesSummable_congr'
abscissaOfAbsConv_le_of_forall_lt_LSeriesSummable 📖mathematicalLSeriesSummable
Complex.ofReal
EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
abscissaOfAbsConv
Real.toEReal
sInf_le_iff
le_of_forall_gt_imp_ge_of_dense
instDenselyOrderedEReal
instIsEmptyFalse
abscissaOfAbsConv_le_of_forall_lt_LSeriesSummable' 📖mathematicalLSeriesSummable
Complex.ofReal
EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
abscissaOfAbsConv
le_of_eq
sInf_eq_bot
EReal.bot_lt_coe
Nat.cast_one
sub_one_lt
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
EReal.zero_lt_top
abscissaOfAbsConv_le_of_forall_lt_LSeriesSummable
le_top
abscissaOfAbsConv_le_of_isBigO_rpow 📖mathematicalAsymptotics.IsBigO
Complex
Real
Complex.instNorm
Real.norm
Filter.atTop
Nat.instPreorder
Real.instPow
Real.instNatCast
EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
abscissaOfAbsConv
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instAddCommMonoidEReal
Real.toEReal
instOneEReal
EReal.exists_between_coe_real
LT.lt.false
LE.le.trans_lt
LSeriesSummable.abscissaOfAbsConv_le
LSeriesSummable_of_isBigO_rpow
EReal.coe_lt_coe_iff
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
abscissaOfAbsConv_le_of_le_const 📖mathematicalReal
Real.instLE
Norm.norm
Complex
Complex.instNorm
EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
abscissaOfAbsConv
instOneEReal
zero_add
abscissaOfAbsConv_le_of_le_const_mul_rpow
Real.rpow_zero
mul_one
abscissaOfAbsConv_le_of_le_const_mul_rpow 📖mathematicalReal
Real.instLE
Norm.norm
Complex
Complex.instNorm
Real.instMul
Real.instPow
Real.instNatCast
EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
abscissaOfAbsConv
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instAddCommMonoidEReal
Real.toEReal
instOneEReal
EReal.exists_between_coe_real
LT.lt.false
LE.le.trans_lt
LSeriesSummable.abscissaOfAbsConv_le
LSeriesSummable_of_le_const_mul_rpow
EReal.coe_lt_coe_iff
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
abscissaOfAbsConv_le_one_of_isBigO_one 📖mathematicalAsymptotics.IsBigO
Complex
Real
Complex.instNorm
Real.norm
Filter.atTop
Nat.instPreorder
Real.instOne
EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
abscissaOfAbsConv
instOneEReal
zero_add
abscissaOfAbsConv_le_of_isBigO_rpow
Real.rpow_zero
NormedDivisionRing.to_normOneClass
summable_real_of_abscissaOfAbsConv_lt 📖mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
abscissaOfAbsConv
Complex.ofReal
Real.toEReal
Summable
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instPow
Real.instNatCast
SummationFilter.unconditional
Complex.ofReal_div
Complex.ofReal_cpow
Nat.cast_nonneg
Real.instIsOrderedRing
LSeriesSummable_of_abscissaOfAbsConv_lt_re
Complex.ofReal_re
Summable.congr_cofinite
instIsTopologicalAddGroupReal
Filter.mp_mem
Set.Finite.compl_mem_cofinite
Set.finite_singleton
Filter.univ_mem'

LSeriesSummable

Theorems

NameKindAssumesProvesValidatesDepends On
abscissaOfAbsConv_le 📖mathematicalLSeriesSummableEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
LSeries.abscissaOfAbsConv
Real.toEReal
Complex.re
sInf_le
of_re_le_re

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
LSeriesSummable_lt_re_of_abscissaOfAbsConv_lt_re 📖mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
LSeries.abscissaOfAbsConv
Real.toEReal
Complex.re
Real
Real.instLT
LSeriesSummable
Complex.ofReal
EReal.exists_between_coe_real
LSeriesSummable_of_abscissaOfAbsConv_lt_re
LSeriesSummable_of_abscissaOfAbsConv_lt_re 📖mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
LSeries.abscissaOfAbsConv
Real.toEReal
Complex.re
LSeriesSummableLSeriesSummable.of_re_le_re
LT.lt.le
Complex.ofReal_re

---

← Back to Index