Documentation Verification Report

Convolution

πŸ“ Source: Mathlib/NumberTheory/LSeries/Convolution.lean

Statistics

MetricCount
Definitionsconvolution, «term_⍟_», toArithmeticFunction
3
TheoremsLSeriesHasSum_mul, LSeriesSummable_mul, LSeries_mul, LSeries_mul', coe_mul, toArithmeticFunction_eq_self, abscissaOfAbsConv_convolution_le, convolution_congr, convolution_def, convolution_map_zero, term_convolution, term_convolution', convolution, convolution, LSeries_convolution, LSeries_convolution', toArithmeticFunction_congr
17
Total20

ArithmeticFunction

Theorems

NameKindAssumesProvesValidatesDepends On
LSeriesHasSum_mul πŸ“–mathematicalLSeriesHasSum
DFunLike.coe
ArithmeticFunction
Complex
Complex.instZero
instFunLikeNat
instMul
Complex.instSemiring
Complex.instMul
β€”LSeriesHasSum.convolution
coe_mul
LSeriesSummable_mul πŸ“–mathematicalLSeriesSummable
DFunLike.coe
ArithmeticFunction
Complex
Complex.instZero
instFunLikeNat
instMul
Complex.instSemiring
β€”LSeriesSummable.convolution
coe_mul
LSeries_mul πŸ“–mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
LSeries.abscissaOfAbsConv
DFunLike.coe
ArithmeticFunction
Complex
Complex.instZero
instFunLikeNat
Real.toEReal
Complex.re
LSeries
instMul
Complex.instSemiring
Complex.instMul
β€”LSeries_convolution
coe_mul
LSeries_mul' πŸ“–mathematicalLSeriesSummable
DFunLike.coe
ArithmeticFunction
Complex
Complex.instZero
instFunLikeNat
LSeries
instMul
Complex.instSemiring
Complex.instMul
β€”LSeries_convolution'
coe_mul
coe_mul πŸ“–mathematicalβ€”LSeries.convolution
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instFunLikeNat
instMul
β€”toArithmeticFunction_eq_self
toArithmeticFunction_eq_self πŸ“–mathematicalβ€”toArithmeticFunction
DFunLike.coe
ArithmeticFunction
instFunLikeNat
β€”ext
map_zero

LSeries

Definitions

NameCategoryTheorems
convolution πŸ“–CompOp
18 mathmath: convolution_one_eq_convolution_zeta, term_convolution', convolution_def, LSeriesHasSum.convolution, ArithmeticFunction.coe_mul, ArithmeticFunction.convolution_vonMangoldt_const_one, ArithmeticFunction.convolution_vonMangoldt_zeta, LSeries_convolution', term_convolution, DirichletCharacter.convolution_twist_vonMangoldt, abscissaOfAbsConv_convolution_le, DirichletCharacter.mul_convolution_distrib, LSeriesSummable.convolution, one_convolution_eq_zeta_convolution, convolution_congr, DirichletCharacter.convolution_mul_moebius, convolution_map_zero, LSeries_convolution

Theorems

NameKindAssumesProvesValidatesDepends On
abscissaOfAbsConv_convolution_le πŸ“–mathematicalβ€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
abscissaOfAbsConv
convolution
Complex
Complex.instSemiring
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderEReal
β€”abscissaOfAbsConv_binop_le
LSeriesSummable.convolution
convolution_congr πŸ“–mathematicalβ€”convolutionβ€”toArithmeticFunction_congr
convolution_def πŸ“–mathematicalβ€”convolution
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Nat.divisorsAntidiagonal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”Finset.sum_congr
mul_ite
MulZeroClass.mul_zero
ite_mul
MulZeroClass.zero_mul
Nat.ne_zero_of_mem_divisorsAntidiagonal
convolution_map_zero πŸ“–mathematicalβ€”convolution
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”convolution_def
Finset.sum_congr
Nat.divisorsAntidiagonal_zero
term_convolution πŸ“–mathematicalβ€”term
convolution
Complex
Complex.instSemiring
Finset.sum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Nat.divisorsAntidiagonal
Complex.instMul
β€”eq_or_ne
Finset.sum_congr
Nat.divisorsAntidiagonal_zero
term_of_ne_zero
convolution_def
Finset.sum_div
Nat.ne_zero_of_mem_divisorsAntidiagonal
mul_comm_div
div_div
mul_div_assoc
Complex.natCast_mul_natCast_cpow
Nat.cast_mul
mul_comm
Nat.mem_divisorsAntidiagonal
term_convolution' πŸ“–mathematicalβ€”term
convolution
Complex
Complex.instSemiring
tsum
Set.Elem
Set.preimage
Set
Set.instSingletonSet
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Complex.instMul
Set.instMembership
SummationFilter.unconditional
β€”eq_or_ne
term_zero
Set.ext
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
MulZeroClass.zero_mul
MulZeroClass.mul_zero
tsum_zero
Finset.tsum_subtype'
term_convolution

LSeries.notation

Definitions

NameCategoryTheorems
Β«term_⍟_Β» πŸ“–CompOpβ€”

LSeriesHasSum

Theorems

NameKindAssumesProvesValidatesDepends On
convolution πŸ“–mathematicalLSeriesHasSumLSeries.convolution
Complex
Complex.instSemiring
Complex.instMul
β€”summable_mul_of_summable_norm
Complex.instCompleteSpace
Summable.norm
Complex.instFiniteDimensionalReal
HasSum.summable
LSeries.term_convolution'
HasSum.tsum_fiberwise
SeminormedAddCommGroup.to_isUniformAddGroup
Complex.instT2Space
HasSum.mul
T4Space.t3Space
instT4SpaceOfT1SpaceOfNormalSpace
T2Space.t1Space
CompletelyNormalSpace.toNormalSpace
UniformSpace.completelyNormalSpace_of_isCountablyGenerated_uniformity
EMetric.instIsCountablyGeneratedUniformity
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing

LSeriesSummable

Theorems

NameKindAssumesProvesValidatesDepends On
convolution πŸ“–mathematicalLSeriesSummableLSeries.convolution
Complex
Complex.instSemiring
β€”LSeriesHasSum.LSeriesSummable
LSeriesHasSum.convolution
LSeriesHasSum

(root)

Definitions

NameCategoryTheorems
toArithmeticFunction πŸ“–CompOp
4 mathmath: ArithmeticFunction.toArithmeticFunction_eq_self, DirichletCharacter.apply_eq_toArithmeticFunction_apply, DirichletCharacter.isMultiplicative_toArithmeticFunction, toArithmeticFunction_congr

Theorems

NameKindAssumesProvesValidatesDepends On
LSeries_convolution πŸ“–mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
LSeries.abscissaOfAbsConv
Real.toEReal
Complex.re
LSeries
LSeries.convolution
Complex
Complex.instSemiring
Complex.instMul
β€”LSeries_convolution'
LSeriesSummable_of_abscissaOfAbsConv_lt_re
LSeries_convolution' πŸ“–mathematicalLSeriesSummableLSeries
LSeries.convolution
Complex
Complex.instSemiring
Complex.instMul
β€”LSeriesHasSum.LSeries_eq
LSeriesHasSum.convolution
LSeriesSummable.LSeriesHasSum
toArithmeticFunction_congr πŸ“–mathematicalβ€”toArithmeticFunctionβ€”ArithmeticFunction.ext

---

← Back to Index