Documentation Verification Report

Injectivity

📁 Source: Mathlib/NumberTheory/LSeries/Injectivity.lean

Statistics

MetricCount
Definitions0
TheoremsabscissaOfAbsConv_add_le, abscissaOfAbsConv_sub_le, eq_of_LSeries_eventually_eq, tendsto_atTop, tendsto_cpow_mul_atTop, LSeries_eq_iff_of_abscissaOfAbsConv_lt_top, LSeries_eq_zero_iff, LSeries_eq_zero_of_abscissaOfAbsConv_eq_top, LSeries_eventually_eq_zero_iff', LSeries_injOn, LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq
11
Total11

LSeries

Theorems

NameKindAssumesProvesValidatesDepends On
abscissaOfAbsConv_add_le 📖mathematicalEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
abscissaOfAbsConv
Pi.instAdd
Complex
Complex.instAdd
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderEReal
abscissaOfAbsConv_binop_le
LSeriesSummable.add
abscissaOfAbsConv_sub_le 📖mathematicalEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
abscissaOfAbsConv
Pi.instSub
Complex
Complex.instSub
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderEReal
abscissaOfAbsConv_binop_le
LSeriesSummable.sub
eq_of_LSeries_eventually_eq 📖EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
abscissaOfAbsConv
Top.top
EReal.instTop
Filter.EventuallyEq
Real
Complex
Filter.atTop
Real.instPreorder
LSeries
Complex.ofReal
LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq
lt_top_iff_ne_top
LE.le.trans_lt
abscissaOfAbsConv_sub_le
max_lt
LSeries_eventually_eq_zero_iff'
tendsto_atTop 📖mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
abscissaOfAbsConv
Top.top
EReal.instTop
Filter.Tendsto
Real
Complex
LSeries
Complex.ofReal
Filter.atTop
Real.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
abscissaOfAbsConv_congr
LSeries_congr
CharP.cast_eq_zero
CharP.ofCharZero
Complex.instCharZero
zero_add
Complex.one_cpow
one_mul
tendsto_cpow_mul_atTop
tendsto_cpow_mul_atTop 📖mathematicalComplex
Complex.instZero
EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
abscissaOfAbsConv
Top.top
EReal.instTop
Filter.Tendsto
Real
Complex.instMul
Complex.instPow
Complex.instAdd
Complex.instNatCast
Complex.instOne
Complex.ofReal
LSeries
Filter.atTop
Real.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
exists_between
instDenselyOrderedEReal
CanLift.prf
EReal.canLift
LT.lt.ne
LT.lt.ne'
LE.le.trans_lt
OrderBot.bot_le
Set.indicator_of_notMem
not_lt_of_ge
lt_trichotomy
zero_div
MulZeroClass.mul_zero
Set.indicator_of_mem
LT.lt.trans
summable_mul_left_iff
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Complex.natCast_add_one_cpow_ne_zero
LSeriesSummable_of_abscissaOfAbsConv_lt_re
LT.lt.trans_le
EReal.coe_le_coe_iff
eq_1
tsum_mul_left
Complex.instT2Space
Summable.tsum_eq_add_tsum_ite
SeminormedAddCommGroup.toIsTopologicalAddGroup
pow_mul_term_eq
eq_or_ne
le_rfl
add_zero
Filter.Tendsto.congr'
Filter.EventuallyEq.symm
Filter.eventuallyEq_of_mem
Filter.mem_atTop
Filter.Tendsto.add
IsTopologicalSemiring.toContinuousAdd
tendsto_const_nhds
Summable.congr
Summable.indicator
SeminormedAddCommGroup.to_isUniformAddGroup
Complex.instCompleteSpace
lt_or_ge
Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.Positivity.div_nonneg_of_pos_of_nonneg
Complex.ofReal_div
Complex.ofReal_add
div_lt_one
Nat.cast_zero
RCLike.charZero_rclike
div_eq_mul_inv
Complex.ofReal_cpow
Complex.ofReal_inv
Real.inv_rpow
inv_div
Filter.Tendsto.const_mul
IsTopologicalSemiring.toContinuousMul
Filter.Tendsto.ofReal
tendsto_rpow_atTop_of_base_lt_one
neg_one_lt_zero
NeZero.charZero_one
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
T2Space.t1Space
Filter.atTop_neBot
instIsDirectedOrder
Real.instArchimedean
tsum_zero
tendsto_tsum_of_dominated_convergence
Summable.norm
Complex.instFiniteDimensionalReal
Filter.eventually_iff
Filter.mp_mem
Filter.univ_mem'
norm_div
Complex.norm_cpow_real
Complex.norm_natCast
Nat.cast_add
one_le_div
Nat.cast_pos'
Nat.instIsOrderedAddMonoid
zero_le
Nat.instCanonicallyOrderedAdd
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
div_le_div₀
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
norm_nonneg
le_refl
Real.rpow_pos_of_pos
lt_of_lt_of_le
Real.rpow_le_rpow_of_exponent_le
norm_zero

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
LSeries_eq_iff_of_abscissaOfAbsConv_lt_top 📖mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
LSeries.abscissaOfAbsConv
Top.top
EReal.instTop
LSeriesLSeries.eq_of_LSeries_eventually_eq
Filter.Eventually.of_forall
LSeries_congr
LSeries_eq_zero_iff 📖mathematicalComplex
Complex.instZero
LSeries
Pi.instZero
LSeries.abscissaOfAbsConv
Top.top
EReal
EReal.instTop
LSeries_eq_zero_of_abscissaOfAbsConv_eq_top
Pi.zero_apply
LSeries_eventually_eq_zero_iff'
Filter.EventuallyEq.rfl
LSeries_zero
LSeries_eq_zero_of_abscissaOfAbsConv_eq_top 📖mathematicalLSeries.abscissaOfAbsConv
Top.top
EReal
EReal.instTop
LSeries
Pi.instZero
Complex
Complex.instZero
LSeries.eq_zero_of_not_LSeriesSummable
LSeriesSummable.abscissaOfAbsConv_le
LT.lt.false
LE.le.trans_lt
EReal.coe_lt_top
LSeries_eventually_eq_zero_iff' 📖mathematicalFilter.EventuallyEq
Real
Complex
Filter.atTop
Real.instPreorder
LSeries
Complex.ofReal
Pi.instZero
Complex.instZero
LSeries.abscissaOfAbsConv
Top.top
EReal
EReal.instTop
Filter.Eventually.of_forall
LSeries_eq_zero_of_abscissaOfAbsConv_eq_top
LSeries.abscissaOfAbsConv_congr
LSeries_congr
Filter.eventuallyEq_iff_exists_mem
MulZeroClass.mul_zero
Filter.Tendsto.congr'
Filter.EventuallyEq.symm
T2Space.t1Space
Complex.instT2Space
Filter.atTop_neBot
instIsDirectedOrder
Real.instIsOrderedRing
Real.instArchimedean
Nat.cast_add
Nat.cast_one
LSeries.tendsto_cpow_mul_atTop
Ne.lt_top
LSeries_zero
LSeries_injOn 📖mathematicalSet.InjOn
LSeries
setOf
Complex
Complex.instZero
EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
LSeries.abscissaOfAbsConv
Top.top
EReal.instTop
LSeries_eq_iff_of_abscissaOfAbsConv_lt_top
LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq 📖mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
LSeries.abscissaOfAbsConv
Top.top
EReal.instTop
Filter.EventuallyEq
Real
Complex
Filter.atTop
Real.instPreorder
LSeries
Complex.ofReal
Pi.instSub
Complex.instSub
Pi.instZero
Complex.instZero
Filter.EventuallyEq.eq_1
Filter.eventually_atTop
instIsDirectedOrder
Real.instIsOrderedRing
Real.instArchimedean
exists_between
instDenselyOrderedEReal
CanLift.prf
EReal.canLift
LT.lt.ne
LT.lt.ne'
LE.le.trans_lt
OrderBot.bot_le
LSeriesSummable_of_abscissaOfAbsConv_lt_re
LT.lt.trans_le
EReal.coe_le_coe_iff
LE.le.trans
le_max_left
le_max_right
Complex.ofReal_re
LSeries_sub
sub_self
Pi.zero_apply

---

← Back to Index