Documentation Verification Report

Nonvanishing

📁 Source: Mathlib/NumberTheory/LSeries/Nonvanishing.lean

Statistics

MetricCount
DefinitionszetaMul
1
TheoremsLFunctionTrivChar_isBigO_near_one_horizontal, LFunction_apply_one_ne_zero, LFunction_isBigO_horizontal, LFunction_ne_zero_of_one_le_re, LFunction_ne_zero_of_re_eq_one, LSeriesSummable_zetaMul, isMultiplicative_zetaMul, norm_LFunction_product_ge_one, norm_LSeries_product_ge_one, summable_neg_log_one_sub_mul_prime_cpow, zetaMul_nonneg, zetaMul_prime_pow_nonneg, riemannZeta_ne_zero_of_one_le_re
13
Total14

DirichletCharacter

Definitions

NameCategoryTheorems
zetaMul 📖CompOp
4 mathmath: zetaMul_prime_pow_nonneg, zetaMul_nonneg, isMultiplicative_zetaMul, LSeriesSummable_zetaMul

Theorems

NameKindAssumesProvesValidatesDepends On
LFunctionTrivChar_isBigO_near_one_horizontal 📖mathematicalAsymptotics.IsBigO
Real
Complex
Complex.instNorm
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Set.Ioi
Real.instPreorder
LFunctionTrivChar
Complex.instAdd
Complex.instOne
Complex.ofReal
DivInvMonoid.toDiv
Complex.instDivInvMonoid
add_sub_cancel_left
Filter.Tendsto.comp
LFunctionTrivChar_residue_one
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
add_zero
Eq.le
Homeomorph.map_punctured_nhds_eq
Asymptotics.isBigO_mul_iff_isBigO_div
eventually_mem_nhdsWithin
Filter.Tendsto.isBigO_one
NormedDivisionRing.to_normOneClass
Asymptotics.IsBigO.mono
Complex.isBigO_comp_ofReal_nhds_ne
nhdsGT_le_nhdsNE
LFunction_apply_one_ne_zero 📖LFunction_ne_zero_of_one_le_re
le_rfl
Complex.one_re
LFunction_isBigO_horizontal 📖mathematicalAsymptotics.IsBigO
Real
Complex
Complex.instNorm
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Set.Ioi
Real.instPreorder
LFunction
Complex.instAdd
Complex.instOne
Complex.ofReal
Complex.instMul
Complex.I
Asymptotics.IsBigO.mono
LFunction.congr_simp
add_comm
add_assoc
DifferentiableAt.continuousAt
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
differentiableAt_LFunction
Filter.Tendsto.isBigO_one
NormedDivisionRing.to_normOneClass
ContinuousAt.tendsto
ContinuousAt.comp
zero_add
ContinuousAt.fun_add
Continuous.continuousAt
Complex.continuous_ofReal
continuousAt_const
nhdsWithin_le_nhds
LFunction_ne_zero_of_one_le_re 📖Real
Real.instLE
Real.instOne
Complex.re
LE.le.eq_or_lt
LFunction_ne_zero_of_re_eq_one
LSeries_ne_zero_of_one_lt_re
LFunction_eq_LSeries
LFunction_ne_zero_of_re_eq_one 📖Complex.re
Real
Real.instOne
Complex.re_add_im
Complex.ofReal_one
mul_comm
Nat.cast_zero
right_ne_zero_of_mul
add_ne_left
AddLeftCancelSemigroup.toIsLeftCancelAdd
not_and_or
LSeriesSummable_zetaMul 📖mathematicalReal
Real.instLT
Real.instOne
Complex.re
LSeriesSummable
DFunLike.coe
ArithmeticFunction
Complex
Complex.instZero
ArithmeticFunction.instFunLikeNat
zetaMul
ArithmeticFunction.LSeriesSummable_mul
ArithmeticFunction.LSeriesSummable_zeta_iff
LSeriesSummable_of_bounded_of_one_lt_re
norm_le_one
isMultiplicative_zetaMul 📖mathematicalArithmeticFunction.IsMultiplicative
Complex
Semiring.toMonoidWithZero
Complex.instSemiring
zetaMul
ArithmeticFunction.IsMultiplicative.mul
ArithmeticFunction.IsMultiplicative.natCast
ArithmeticFunction.isMultiplicative_zeta
isMultiplicative_toArithmeticFunction
norm_LFunction_product_ge_one 📖mathematicalReal
Real.instLT
Real.instZero
Real.instLE
Norm.norm
Complex
Complex.instNorm
Complex.instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
LFunctionTrivChar
Complex.instAdd
Complex.instOne
Complex.ofReal
LFunction
Complex.I
DirichletCharacter
CommGroupWithZero.toCommMonoidWithZero
Semifield.toCommGroupWithZero
Field.toSemifield
Complex.instField
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
ZMod
CommRing.toCommMonoid
ZMod.commRing
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instOne
Nat.instAtLeastTwoHAddOfNat
LFunctionTrivChar.eq_1
LFunction_eq_LSeries
norm_LSeries_product_ge_one
norm_LSeries_product_ge_one 📖mathematicalReal
Real.instLT
Real.instZero
Real.instLE
Norm.norm
Complex
Complex.instNorm
Complex.instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
LSeries
DFunLike.coe
DirichletCharacter
CommGroupWithZero.toCommMonoidWithZero
Semifield.toCommGroupWithZero
Field.toSemifield
Complex.instField
ZMod
MulChar.instFunLike
CommRing.toCommMonoid
ZMod.commRing
MulChar.hasOne
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Complex.instAdd
Complex.instOne
Complex.ofReal
Complex.I
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instOne
Nat.instAtLeastTwoHAddOfNat
summable_neg_log_one_sub_mul_prime_cpow
Summable.mul_left
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
HasSum.summable
Complex.hasSum_re
Summable.hasSum
LSeries_eulerProduct_exp_log
Complex.norm_exp
MulZeroClass.zero_mul
sub_zero
Complex.re_tsum
SummationFilter.instNeBotUnconditional
tsum_mul_left
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Summable.tsum_add
IsTopologicalSemiring.toContinuousAdd
Summable.add
neg_add_rev
mul_neg
MulChar.pow_apply'
two_ne_zero
Complex.ofReal_add
tsum_nonneg
Real.instIsOrderedAddMonoid
RCLike.instOrderClosedTopology
Nat.Prime.two_le
Subtype.prop
summable_neg_log_one_sub_mul_prime_cpow 📖mathematicalReal
Real.instLT
Real.instOne
Complex.re
Summable
Complex
Nat.Primes
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Complex.instNeg
Complex.log
Complex.instSub
Complex.instOne
Complex.instMul
DFunLike.coe
DirichletCharacter
CommGroupWithZero.toCommMonoidWithZero
Semifield.toCommGroupWithZero
Field.toSemifield
Complex.instField
ZMod
MulChar.instFunLike
CommRing.toCommMonoid
ZMod.commRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.Prime
Complex.instPow
Complex.instNatCast
SummationFilter.unconditional
norm_mul
NormedDivisionRing.toNormMulClass
Complex.norm_natCast_cpow_of_re_ne_zero
Complex.re_neg_ne_zero_of_one_lt_re
mul_le_of_le_one_left
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
Real.rpow_nonneg
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
norm_le_one
Summable.neg
SeminormedAddCommGroup.toIsTopologicalAddGroup
Summable.clog_one_sub
Summable.of_norm
Complex.instCompleteSpace
Summable.of_nonneg_of_le
norm_nonneg
Nat.Primes.summable_rpow
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
zetaMul_nonneg 📖mathematicalDirichletCharacter
Complex
CommGroupWithZero.toCommMonoidWithZero
Semifield.toCommGroupWithZero
Field.toSemifield
Complex.instField
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
ZMod
CommRing.toCommMonoid
ZMod.commRing
MulChar.hasOne
Preorder.toLE
PartialOrder.toPreorder
Complex.partialOrder
Complex.instZero
DFunLike.coe
ArithmeticFunction
ArithmeticFunction.instFunLikeNat
zetaMul
eq_or_ne
ArithmeticFunction.map_zero
ArithmeticFunction.IsMultiplicative.multiplicative_factorization
isMultiplicative_zetaMul
Finset.prod_nonneg
RCLike.toZeroLEOneClass
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
RCLike.toIsStrictOrderedRing
zetaMul_prime_pow_nonneg
Nat.prime_of_mem_primeFactors
zetaMul_prime_pow_nonneg 📖mathematicalDirichletCharacter
Complex
CommGroupWithZero.toCommMonoidWithZero
Semifield.toCommGroupWithZero
Field.toSemifield
Complex.instField
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MulChar.commGroup
ZMod
CommRing.toCommMonoid
ZMod.commRing
MulChar.hasOne
Nat.Prime
Preorder.toLE
PartialOrder.toPreorder
Complex.partialOrder
Complex.instZero
DFunLike.coe
ArithmeticFunction
ArithmeticFunction.instFunLikeNat
zetaMul
Nat.instMonoid
ArithmeticFunction.coe_zeta_mul_apply
Finset.sum_congr
Nat.sum_divisors_prime_pow
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
Nat.instNontrivial
Nat.Prime.ne_zero
Nat.cast_pow
map_pow
MulCharClass.toMonoidHomClass
MulChar.instMulCharClass
MulChar.isQuadratic_iff_sq_eq_one
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Complex.instNontrivial
Finset.sum_nonneg
IsOrderedAddMonoid.toAddLeftMono
RCLike.toIsOrderedAddMonoid
RCLike.toZeroLEOneClass
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
RCLike.toIsStrictOrderedRing
one_pow
neg_one_geom_sum
le_rfl
zero_le_one

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
riemannZeta_ne_zero_of_one_le_re 📖Real
Real.instLE
Real.instOne
Complex.re
eq_or_ne
riemannZeta_one_ne_zero
DirichletCharacter.LFunction_ne_zero_of_one_le_re
DirichletCharacter.LFunction_modOne_eq

---

← Back to Index