๐ Source: Mathlib/NumberTheory/LSeries/PrimesInAP.lean
LFunctionResidueClassAux
residueClass
LFunctionResidueClassAux_real
LSeries_residueClass_eq
LSeries_residueClass_lower_bound
abscissaOfAbsConv_residueClass_le_one
continuousOn_LFunctionResidueClassAux
continuousOn_LFunctionResidueClassAux'
eqOn_LFunctionResidueClassAux
not_summable_residueClass_prime_div
residueClass_apply
residueClass_apply_zero
residueClass_eq
residueClass_le
residueClass_nonneg
summable_residueClass_non_primes_div
support_residueClass_prime_div
forall_exists_prime_gt_and_eq_mod
forall_exists_prime_gt_and_modEq
forall_exists_prime_gt_and_zmodEq
frequently_atTop_prime_and_modEq
infinite_setOf_prime_and_eq_mod
infinite_setOf_prime_and_modEq
setOf_prime_and_eq_mod_infinite
tprod_eq_tprod_primes_mul_tprod_primes_of_mulSupport_subset_prime_powers
tprod_eq_tprod_primes_of_mulSupport_subset_prime_powers
tsum_eq_tsum_primes_add_tsum_primes_of_support_subset_prime_powers
tsum_eq_tsum_primes_of_support_subset_prime_powers
IsUnit
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
Real
Real.instLT
Real.instOne
Complex.ofReal
Complex.re
Complex.ofReal_sub
LSeries.eq_1
Complex.re_tsum
SummationFilter.instNeBotUnconditional
LSeriesSummable_of_abscissaOfAbsConv_lt_re
LE.le.trans_lt
Nat.cast_one
Complex.ofReal_tsum
tsum_congr
eq_or_ne
LSeries.term_of_ne_zero
Complex.ofReal_cpow
Nat.cast_nonneg
Real.instIsOrderedRing
Complex.ofReal_natCast
Complex.ofReal_one
Complex.ofReal_inv
Complex.ofReal_div
Complex.ofReal_re
LSeries
Complex
Complex.instMul
Complex.instNeg
Complex.instInv
Complex.instNatCast
Nat.totient
Finset.sum
DirichletCharacter
CommGroupWithZero.toCommMonoidWithZero
Semifield.toCommGroupWithZero
Field.toSemifield
Complex.instField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Finset.univ
DirichletCharacter.fintype
Complex.commRing
instIsDomain
DFunLike.coe
MulChar.instFunLike
CommRing.toCommMonoid
ZMod.instInv
DivInvMonoid.toDiv
Complex.instDivInvMonoid
deriv
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.addCommGroup
Complex.instModuleSelf
DirichletCharacter.LFunction
Finset.sum_congr
DirichletCharacter.deriv_LFunction_eq_deriv_LSeries
DirichletCharacter.LFunction_eq_LSeries
neg_mul
DirichletCharacter.LSeries_twist_vonMangoldt_eq
eq_inv_mul_iff_mul_eqโ
Nat.cast_zero
Complex.instCharZero
LT.lt.ne'
Nat.totient_pos
LSeries_sum
LSeriesSummable.smul
DirichletCharacter.LSeriesSummable_twist_vonMangoldt
LSeries_congr
mul_inv_cancel_of_invertible
Nat.neZero_totient
one_mul
Finset.sum_apply
Real.instLE
Real.instSub
Real.instDivInvMonoid
Real.instInv
Real.instNatCast
tsum
Real.instAddCommMonoid
Real.pseudoMetricSpace
Real.instPow
SummationFilter.unconditional
Complex.ofReal_injective
Complex.ofReal_add
Set.mem_setOf
sub_add_cancel
zero_div
Nat.instAtLeastTwoHAddOfNat
ContinuousOn.comp
Continuous.continuousOn
Complex.continuous_re
Complex.continuous_ofReal
bddBelow_def
IsCompact.bddBelow_image
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
CompactIccSpace.isCompact_Icc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
Set.mem_image_of_mem
add_comm
sub_neg_eq_add
add_le_add_iff_left
IsOrderedAddMonoid.toAddLeftMono
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Set.mem_Icc_of_Ioc
EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
LSeries.abscissaOfAbsConv
instOneEReal
LSeries.abscissaOfAbsConv_le_of_forall_lt_LSeriesSummable
ArithmeticFunction.LSeriesSummable_vonMangoldt
Set.indicator_of_notMem
Summable.indicator
SeminormedAddCommGroup.to_isUniformAddGroup
Complex.instCompleteSpace
ContinuousOn
setOf
ContinuousOn.mono
DirichletCharacter.LFunction_ne_zero_of_one_le_re
Complex.instOne
sub_eq_add_neg
ContinuousOn.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
continuousOn_const
ContinuousOn.add
IsTopologicalSemiring.toContinuousAdd
DirichletCharacter.continuousOn_neg_logDeriv_LFunctionTrivCharโ
mul_div_assoc
continuousOn_finset_sum
DirichletCharacter.continuousOn_neg_logDeriv_LFunction_of_nontriv
Set.EqOn
Complex.instSub
neg_div
neg_add'
mul_neg
div_eq_mul_one_div
mul_add
Distrib.leftDistribClass
isUnit_of_dvd_one
ZMod.inv_mul_of_unit
Fintype.sum_eq_add_sum_compl
MulChar.one_apply
add_right_comm
LT.lt.false
LT.lt.trans_eq
Complex.one_re
DirichletCharacter.deriv_LFunctionTrivCharโ_apply_of_ne_one
DirichletCharacter.LFunctionTrivCharโ.eq_1
Function.update_of_ne
DirichletCharacter.LFunctionTrivChar.eq_1
add_div
mul_div_mul_left
sub_ne_zero_of_ne
mul_one
mul_comm
mul_div_mul_right
LT.lt.le
Summable
Nat.Prime
Nat.decidablePrime
Real.instZero
ite_add_ite
zero_add
add_zero
Summable.add
instIsTopologicalRingReal
Summable.tsum_le_tsum
Real.zero_rpow
LT.lt.trans
zero_lt_one
Real.instZeroLEOneClass
NeZero.one
Real.instNontrivial
div_zero
div_le_div_of_nonneg_left
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
RCLike.charZero_rclike
Real.rpow_one
Real.rpow_le_rpow_of_exponent_le
LSeries.summable_real_of_abscissaOfAbsConv_lt
div_le_iffโ
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
sub_le_iff_le_add
LE.le.trans
inv_pos
le_or_gt
LT.lt.trans_le
Set.right_mem_Ioc
one_lt_two
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
div_pos
min_le_right
min_sub_sub_right
add_sub_cancel_left
lt_div_iffโ'
min_le_left
div_lt_self
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
ArithmeticFunction
ArithmeticFunction.instFunLikeNat
ArithmeticFunction.vonMangoldt
Set.indicator_apply
MulZeroClass.mul_zero
DirichletCharacter.sum_char_inv_mul_char_eq
IsSepClosed.hasEnoughRootsOfUnity
NeZero.charZero
Monoid.neZero_exponent_of_finite
instFiniteZModUnits
IsSepClosed.of_isAlgClosed
Complex.isAlgClosed
ite_mul
MulZeroClass.zero_mul
ArithmeticFunction.map_zero
Function.hasSMul
Algebra.toSMul
Complex.instCommSemiring
Algebra.id
Pi.addCommMonoid
Set.indicator_apply_le'
le_rfl
ArithmeticFunction.vonMangoldt_nonneg
Set.indicator_apply_nonneg
div_nonneg
Mathlib.Meta.Positivity.ite_nonneg
Mathlib.Meta.Positivity.nonneg_of_isNat
Nat.cast_nonneg'
div_le_div_of_nonneg_right
Summable.of_nonneg_of_le
Subtype.prop
Summable.congr
summable_subtype_iff_indicator
Equiv.eq_comp_symm
Equiv.summable_iff
pow_one
Function.Injective.summable_iff
Function.Injective.prodMap
add_left_injective
Set.range_prodMap
Set.range_id
Nat.instCanonicallyOrderedAdd
Set.indicator_apply_eq_self
Function.support
Set.ext
ArithmeticFunction.vonMangoldt_ne_zero_iff
Nat.Prime.isPrimePow
Nat.Prime.ne_zero
Prime
Set.infinite_iff_exists_gt
LT.lt.gt
ModEq
IsCoprime
Int.instCommSemiring
Int.ModEq
ZMod.coe_int_isUnit_iff_isCoprime
isCoprime_comm
Int.cast_natCast
Filter.Frequently
Filter.atTop
instPreorder
Filter.frequently_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
instArchimedeanNat
Set.Infinite
ArithmeticFunction.vonMangoldt.not_summable_residueClass_prime_div
summable_of_finite_support
SummationFilter.instHasSupportOfLeAtTop
SummationFilter.instLeAtTopUnconditional
ArithmeticFunction.vonMangoldt.support_residueClass_prime_div
frequently_atTop_iff_infinite
Multipliable
CommGroup.toCommMonoid
Set
Set.instHasSubset
Function.mulSupport
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
IsPrimePow
Nat.instCommMonoidWithZero
tprod
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Nat.Primes
Monoid.toNatPow
Nat.instMonoid
Multipliable.comp_injective
StrictMono.injective
strictMono_nat_of_lt_succ
pow_lt_pow_rightโ
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.instZeroLEOneClass
Nat.Prime.one_lt
lt_add_one
Nat.instIsOrderedAddMonoid
Multipliable.tprod_eq_zero_mul
IsUniformGroup.to_topologicalGroup
T25Space.t2Space
T3Space.t25Space
instT3Space
IsTopologicalGroup.regularSpace
add_assoc
one_add_one_eq_two
Multipliable.tprod_mul
IsTopologicalGroup.toContinuousMul
Multipliable.subtype
Multipliable.prod
Subtype.val_injective
Equiv.injective
Equiv.multipliable_iff
Equiv.apply_symm_apply
tprod_subtype_eq_of_mulSupport_subset
Equiv.tprod_eq
Multipliable.tprod_prod
tprod_congr
Nat.Primes.coe_prodNatEquiv_apply
AddCommGroup.toAddCommMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Summable.comp_injective
Summable.tsum_eq_zero_add
IsUniformAddGroup.to_topologicalAddGroup
IsTopologicalAddGroup.regularSpace
Summable.tsum_add
IsTopologicalAddGroup.toContinuousAdd
Summable.subtype
Summable.prod
tsum_subtype_eq_of_support_subset
Equiv.tsum_eq
Summable.tsum_prod
---
โ Back to Index