Documentation Verification Report

PrimesInAP

๐Ÿ“ Source: Mathlib/NumberTheory/LSeries/PrimesInAP.lean

Statistics

MetricCount
DefinitionsLFunctionResidueClassAux, residueClass
2
TheoremsLFunctionResidueClassAux_real, LSeries_residueClass_eq, LSeries_residueClass_lower_bound, abscissaOfAbsConv_residueClass_le_one, continuousOn_LFunctionResidueClassAux, continuousOn_LFunctionResidueClassAux', eqOn_LFunctionResidueClassAux, not_summable_residueClass_prime_div, residueClass_apply, residueClass_apply_zero, residueClass_eq, residueClass_le, residueClass_nonneg, summable_residueClass_non_primes_div, support_residueClass_prime_div, forall_exists_prime_gt_and_eq_mod, forall_exists_prime_gt_and_modEq, forall_exists_prime_gt_and_zmodEq, frequently_atTop_prime_and_modEq, infinite_setOf_prime_and_eq_mod, infinite_setOf_prime_and_modEq, setOf_prime_and_eq_mod_infinite, tprod_eq_tprod_primes_mul_tprod_primes_of_mulSupport_subset_prime_powers, tprod_eq_tprod_primes_of_mulSupport_subset_prime_powers, tsum_eq_tsum_primes_add_tsum_primes_of_support_subset_prime_powers, tsum_eq_tsum_primes_of_support_subset_prime_powers
26
Total28

ArithmeticFunction.vonMangoldt

Definitions

NameCategoryTheorems
LFunctionResidueClassAux ๐Ÿ“–CompOp
4 mathmath: continuousOn_LFunctionResidueClassAux', continuousOn_LFunctionResidueClassAux, LFunctionResidueClassAux_real, eqOn_LFunctionResidueClassAux
residueClass ๐Ÿ“–CompOp
12 mathmath: residueClass_eq, summable_residueClass_non_primes_div, support_residueClass_prime_div, residueClass_apply, abscissaOfAbsConv_residueClass_le_one, not_summable_residueClass_prime_div, residueClass_nonneg, residueClass_le, LSeries_residueClass_lower_bound, LSeries_residueClass_eq, residueClass_apply_zero, eqOn_LFunctionResidueClassAux

Theorems

NameKindAssumesProvesValidatesDepends On
LFunctionResidueClassAux_real ๐Ÿ“–mathematicalIsUnit
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
Real
Real.instLT
Real.instOne
LFunctionResidueClassAux
Complex.ofReal
Complex.re
โ€”eqOn_LFunctionResidueClassAux
Complex.ofReal_sub
LSeries.eq_1
Complex.re_tsum
SummationFilter.instNeBotUnconditional
LSeriesSummable_of_abscissaOfAbsConv_lt_re
LE.le.trans_lt
abscissaOfAbsConv_residueClass_le_one
Nat.cast_one
Complex.ofReal_tsum
tsum_congr
eq_or_ne
LSeries.term_of_ne_zero
Complex.ofReal_cpow
Nat.cast_nonneg
Real.instIsOrderedRing
Complex.ofReal_natCast
Complex.ofReal_one
Complex.ofReal_inv
Complex.ofReal_div
Complex.ofReal_re
LSeries_residueClass_eq ๐Ÿ“–mathematicalIsUnit
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
Real
Real.instLT
Real.instOne
Complex.re
LSeries
Complex.ofReal
residueClass
Complex
Complex.instMul
Complex.instNeg
Complex.instInv
Complex.instNatCast
Nat.totient
Finset.sum
DirichletCharacter
CommGroupWithZero.toCommMonoidWithZero
Semifield.toCommGroupWithZero
Field.toSemifield
Complex.instField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Finset.univ
DirichletCharacter.fintype
Complex.commRing
instIsDomain
DFunLike.coe
MulChar.instFunLike
CommRing.toCommMonoid
ZMod.instInv
DivInvMonoid.toDiv
Complex.instDivInvMonoid
deriv
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.addCommGroup
Complex.instModuleSelf
DirichletCharacter.LFunction
โ€”instIsDomain
Finset.sum_congr
DirichletCharacter.deriv_LFunction_eq_deriv_LSeries
DirichletCharacter.LFunction_eq_LSeries
neg_mul
DirichletCharacter.LSeries_twist_vonMangoldt_eq
eq_inv_mul_iff_mul_eqโ‚€
Nat.cast_zero
Complex.instCharZero
LT.lt.ne'
Nat.totient_pos
LSeries_sum
LSeriesSummable.smul
DirichletCharacter.LSeriesSummable_twist_vonMangoldt
LSeries_congr
residueClass_apply
mul_inv_cancel_of_invertible
Nat.neZero_totient
one_mul
Finset.sum_apply
LSeries_residueClass_lower_bound ๐Ÿ“–mathematicalIsUnit
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
Real
Real.instLE
Real.instSub
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instInv
Real.instNatCast
Nat.totient
Real.instOne
tsum
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
residueClass
Real.instPow
SummationFilter.unconditional
โ€”Complex.ofReal_injective
Complex.ofReal_tsum
Complex.ofReal_div
Complex.ofReal_cpow
Nat.cast_nonneg
Real.instIsOrderedRing
Complex.ofReal_add
Complex.ofReal_inv
Complex.ofReal_sub
LFunctionResidueClassAux_real
eqOn_LFunctionResidueClassAux
Set.mem_setOf
Complex.ofReal_re
sub_add_cancel
tsum_congr
residueClass_apply_zero
zero_div
Nat.instAtLeastTwoHAddOfNat
ContinuousOn.comp
Continuous.continuousOn
Complex.continuous_re
continuousOn_LFunctionResidueClassAux
Complex.continuous_ofReal
bddBelow_def
IsCompact.bddBelow_image
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
CompactIccSpace.isCompact_Icc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
Set.mem_image_of_mem
add_comm
sub_neg_eq_add
add_le_add_iff_left
IsOrderedAddMonoid.toAddLeftMono
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Set.mem_Icc_of_Ioc
abscissaOfAbsConv_residueClass_le_one ๐Ÿ“–mathematicalโ€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
LSeries.abscissaOfAbsConv
Complex.ofReal
residueClass
instOneEReal
โ€”LSeries.abscissaOfAbsConv_le_of_forall_lt_LSeriesSummable
ArithmeticFunction.LSeriesSummable_vonMangoldt
Set.indicator_of_notMem
zero_div
Summable.indicator
SeminormedAddCommGroup.to_isUniformAddGroup
Complex.instCompleteSpace
continuousOn_LFunctionResidueClassAux ๐Ÿ“–mathematicalโ€”ContinuousOn
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
LFunctionResidueClassAux
setOf
Real
Real.instLE
Real.instOne
Complex.re
โ€”ContinuousOn.mono
continuousOn_LFunctionResidueClassAux'
eq_or_ne
DirichletCharacter.LFunction_ne_zero_of_one_le_re
Set.mem_setOf
continuousOn_LFunctionResidueClassAux' ๐Ÿ“–mathematicalโ€”ContinuousOn
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
LFunctionResidueClassAux
setOf
Complex.instOne
โ€”sub_eq_add_neg
ContinuousOn.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
continuousOn_const
ContinuousOn.add
IsTopologicalSemiring.toContinuousAdd
ContinuousOn.mono
DirichletCharacter.continuousOn_neg_logDeriv_LFunctionTrivCharโ‚
Finset.sum_congr
mul_div_assoc
continuousOn_finset_sum
DirichletCharacter.continuousOn_neg_logDeriv_LFunction_of_nontriv
DirichletCharacter.LFunction_ne_zero_of_one_le_re
eqOn_LFunctionResidueClassAux ๐Ÿ“–mathematicalIsUnit
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
Set.EqOn
Complex
LFunctionResidueClassAux
Complex.instSub
LSeries
Complex.ofReal
residueClass
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instInv
Complex.instNatCast
Nat.totient
Complex.instOne
setOf
Real
Real.instLT
Real.instOne
Complex.re
โ€”Set.mem_setOf
instIsDomain
LSeries_residueClass_eq
neg_div
neg_add'
mul_neg
neg_mul
div_eq_mul_one_div
sub_eq_add_neg
mul_add
Distrib.leftDistribClass
isUnit_of_dvd_one
ZMod.inv_mul_of_unit
Fintype.sum_eq_add_sum_compl
MulChar.one_apply
one_mul
add_right_comm
Finset.sum_congr
mul_div_assoc
LT.lt.false
LT.lt.trans_eq
Complex.one_re
DirichletCharacter.deriv_LFunctionTrivCharโ‚_apply_of_ne_one
DirichletCharacter.LFunctionTrivCharโ‚.eq_1
Function.update_of_ne
DirichletCharacter.LFunctionTrivChar.eq_1
add_div
mul_div_mul_left
sub_ne_zero_of_ne
mul_one
mul_comm
mul_div_mul_right
DirichletCharacter.LFunction_ne_zero_of_one_le_re
LT.lt.le
not_summable_residueClass_prime_div ๐Ÿ“–mathematicalIsUnit
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
Summable
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
DivInvMonoid.toDiv
Real.instDivInvMonoid
Nat.Prime
Nat.decidablePrime
residueClass
Real.instZero
Real.instNatCast
SummationFilter.unconditional
โ€”ite_add_ite
zero_add
add_zero
Summable.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
summable_residueClass_non_primes_div
Summable.tsum_le_tsum
Real.instIsOrderedAddMonoid
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
SummationFilter.instNeBotUnconditional
Nat.cast_zero
Real.zero_rpow
LT.lt.ne'
LT.lt.trans
zero_lt_one
Real.instZeroLEOneClass
NeZero.one
Real.instNontrivial
div_zero
div_le_div_of_nonneg_left
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
residueClass_nonneg
IsOrderedAddMonoid.toAddLeftMono
RCLike.charZero_rclike
Real.rpow_one
Real.rpow_le_rpow_of_exponent_le
Nat.cast_one
LT.lt.le
LSeries.summable_real_of_abscissaOfAbsConv_lt
LE.le.trans_lt
abscissaOfAbsConv_residueClass_le_one
Nat.instAtLeastTwoHAddOfNat
LSeries_residueClass_lower_bound
div_le_iffโ‚€
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
sub_le_iff_le_add
LE.le.trans
inv_pos
Nat.neZero_totient
le_or_gt
LT.lt.trans_le
Set.right_mem_Ioc
one_lt_two
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
LT.lt.false
mul_one
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
contravariant_lt_of_covariant_le
Real.instIsOrderedRing
div_pos
min_le_right
min_sub_sub_right
add_sub_cancel_left
lt_div_iffโ‚€'
min_le_left
div_lt_self
residueClass_apply ๐Ÿ“–mathematicalIsUnit
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
Complex.ofReal
residueClass
Complex
Complex.instMul
Complex.instInv
Complex.instNatCast
Nat.totient
Finset.sum
DirichletCharacter
CommGroupWithZero.toCommMonoidWithZero
Semifield.toCommGroupWithZero
Field.toSemifield
Complex.instField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Finset.univ
DirichletCharacter.fintype
Complex.commRing
instIsDomain
DFunLike.coe
MulChar.instFunLike
CommRing.toCommMonoid
ZMod.instInv
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
ArithmeticFunction
Real
Real.instZero
ArithmeticFunction.instFunLikeNat
ArithmeticFunction.vonMangoldt
โ€”instIsDomain
eq_inv_mul_iff_mul_eqโ‚€
Nat.cast_zero
Complex.instCharZero
LT.lt.ne'
Nat.totient_pos
Set.indicator_apply
MulZeroClass.mul_zero
DirichletCharacter.sum_char_inv_mul_char_eq
IsSepClosed.hasEnoughRootsOfUnity
NeZero.charZero
Monoid.neZero_exponent_of_finite
instFiniteZModUnits
IsSepClosed.of_isAlgClosed
Complex.isAlgClosed
ite_mul
MulZeroClass.zero_mul
residueClass_apply_zero ๐Ÿ“–mathematicalโ€”residueClass
Real
Real.instZero
โ€”Nat.cast_zero
ArithmeticFunction.map_zero
residueClass_eq ๐Ÿ“–mathematicalIsUnit
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
Complex.ofReal
residueClass
Complex
Function.hasSMul
Algebra.toSMul
Complex.instCommSemiring
Algebra.id
Complex.instInv
Complex.instNatCast
Nat.totient
Finset.sum
DirichletCharacter
CommGroupWithZero.toCommMonoidWithZero
Semifield.toCommGroupWithZero
Field.toSemifield
Complex.instField
Pi.addCommMonoid
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Finset.univ
DirichletCharacter.fintype
Complex.commRing
instIsDomain
DFunLike.coe
MulChar.instFunLike
CommRing.toCommMonoid
ZMod.instInv
Complex.instMul
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
ArithmeticFunction
Real
Real.instZero
ArithmeticFunction.instFunLikeNat
ArithmeticFunction.vonMangoldt
โ€”instIsDomain
Finset.sum_apply
Finset.sum_congr
residueClass_apply
residueClass_le ๐Ÿ“–mathematicalโ€”Real
Real.instLE
residueClass
DFunLike.coe
ArithmeticFunction
Real.instZero
ArithmeticFunction.instFunLikeNat
ArithmeticFunction.vonMangoldt
โ€”Set.indicator_apply_le'
le_rfl
ArithmeticFunction.vonMangoldt_nonneg
residueClass_nonneg ๐Ÿ“–mathematicalโ€”Real
Real.instLE
Real.instZero
residueClass
โ€”Set.indicator_apply_nonneg
ArithmeticFunction.vonMangoldt_nonneg
summable_residueClass_non_primes_div ๐Ÿ“–mathematicalโ€”Summable
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
DivInvMonoid.toDiv
Real.instDivInvMonoid
Nat.Prime
Nat.decidablePrime
Real.instZero
residueClass
Real.instNatCast
SummationFilter.unconditional
โ€”residueClass_nonneg
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.ite_nonneg
Mathlib.Meta.Positivity.nonneg_of_isNat
Real.instIsOrderedRing
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
le_rfl
residueClass_le
Nat.cast_nonneg
Summable.of_nonneg_of_le
Subtype.prop
zero_div
Summable.congr
summable_subtype_iff_indicator
Equiv.eq_comp_symm
Equiv.summable_iff
zero_add
pow_one
Function.Injective.summable_iff
Function.Injective.prodMap
add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
Set.range_prodMap
Set.range_id
Nat.instCanonicallyOrderedAdd
Set.indicator_apply_eq_self
RCLike.charZero_rclike
support_residueClass_prime_div ๐Ÿ“–mathematicalโ€”Function.support
Real
Real.instZero
DivInvMonoid.toDiv
Real.instDivInvMonoid
Nat.Prime
Nat.decidablePrime
residueClass
Real.instNatCast
setOf
ZMod
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
ZMod.commRing
โ€”RCLike.charZero_rclike
Set.ext
ArithmeticFunction.vonMangoldt_ne_zero_iff
Nat.Prime.isPrimePow
Nat.Prime.ne_zero

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
forall_exists_prime_gt_and_eq_mod ๐Ÿ“–mathematicalIsUnit
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
Prime
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
โ€”Set.infinite_iff_exists_gt
infinite_setOf_prime_and_eq_mod
LT.lt.gt
Set.mem_setOf
forall_exists_prime_gt_and_modEq ๐Ÿ“–mathematicalโ€”Prime
ModEq
โ€”forall_exists_prime_gt_and_zmodEq
forall_exists_prime_gt_and_zmodEq ๐Ÿ“–mathematicalIsCoprime
Int.instCommSemiring
Prime
Int.ModEq
โ€”ZMod.coe_int_isUnit_iff_isCoprime
isCoprime_comm
forall_exists_prime_gt_and_eq_mod
Int.cast_natCast
frequently_atTop_prime_and_modEq ๐Ÿ“–mathematicalโ€”Filter.Frequently
Prime
ModEq
Filter.atTop
instPreorder
โ€”Filter.frequently_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
instArchimedeanNat
forall_exists_prime_gt_and_modEq
LT.lt.le
infinite_setOf_prime_and_eq_mod ๐Ÿ“–mathematicalIsUnit
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
Set.Infinite
setOf
Prime
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
โ€”ArithmeticFunction.vonMangoldt.not_summable_residueClass_prime_div
summable_of_finite_support
SummationFilter.instHasSupportOfLeAtTop
SummationFilter.instLeAtTopUnconditional
ArithmeticFunction.vonMangoldt.support_residueClass_prime_div
infinite_setOf_prime_and_modEq ๐Ÿ“–mathematicalโ€”Set.Infinite
setOf
Prime
ModEq
โ€”frequently_atTop_iff_infinite
frequently_atTop_prime_and_modEq
setOf_prime_and_eq_mod_infinite ๐Ÿ“–mathematicalIsUnit
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
Set.Infinite
setOf
Prime
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
โ€”infinite_setOf_prime_and_eq_mod

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
tprod_eq_tprod_primes_mul_tprod_primes_of_mulSupport_subset_prime_powers ๐Ÿ“–mathematicalMultipliable
CommGroup.toCommMonoid
UniformSpace.toTopologicalSpace
SummationFilter.unconditional
Set
Set.instHasSubset
Function.mulSupport
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
setOf
IsPrimePow
Nat.instCommMonoidWithZero
tprod
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Nat.Primes
Nat.Prime
Monoid.toNatPow
Nat.instMonoid
โ€”tprod_eq_tprod_primes_of_mulSupport_subset_prime_powers
Multipliable.comp_injective
StrictMono.injective
strictMono_nat_of_lt_succ
pow_lt_pow_rightโ‚€
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.instZeroLEOneClass
Nat.Prime.one_lt
Subtype.prop
lt_add_one
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instAtLeastTwoHAddOfNat
Multipliable.tprod_eq_zero_mul
IsUniformGroup.to_topologicalGroup
T25Space.t2Space
T3Space.t25Space
instT3Space
IsTopologicalGroup.regularSpace
zero_add
pow_one
add_assoc
one_add_one_eq_two
Multipliable.tprod_mul
IsTopologicalGroup.toContinuousMul
SummationFilter.instNeBotUnconditional
Multipliable.subtype
Multipliable.prod
Subtype.val_injective
Equiv.injective
Function.Injective.prodMap
add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
tprod_eq_tprod_primes_of_mulSupport_subset_prime_powers ๐Ÿ“–mathematicalMultipliable
CommGroup.toCommMonoid
UniformSpace.toTopologicalSpace
SummationFilter.unconditional
Set
Set.instHasSubset
Function.mulSupport
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
setOf
IsPrimePow
Nat.instCommMonoidWithZero
tprod
Nat.Primes
Monoid.toNatPow
Nat.instMonoid
Nat.Prime
โ€”Equiv.multipliable_iff
Equiv.apply_symm_apply
Multipliable.subtype
tprod_subtype_eq_of_mulSupport_subset
Equiv.tprod_eq
Multipliable.tprod_prod
tprod_congr
Nat.Primes.coe_prodNatEquiv_apply
tsum_eq_tsum_primes_add_tsum_primes_of_support_subset_prime_powers ๐Ÿ“–mathematicalSummable
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
SummationFilter.unconditional
Set
Set.instHasSubset
Function.support
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
setOf
IsPrimePow
Nat.instCommMonoidWithZero
tsum
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Nat.Primes
Nat.Prime
Monoid.toNatPow
Nat.instMonoid
โ€”tsum_eq_tsum_primes_of_support_subset_prime_powers
Summable.comp_injective
StrictMono.injective
strictMono_nat_of_lt_succ
pow_lt_pow_rightโ‚€
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.instZeroLEOneClass
Nat.Prime.one_lt
Subtype.prop
lt_add_one
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instAtLeastTwoHAddOfNat
Summable.tsum_eq_zero_add
IsUniformAddGroup.to_topologicalAddGroup
T25Space.t2Space
T3Space.t25Space
instT3Space
IsTopologicalAddGroup.regularSpace
zero_add
pow_one
add_assoc
one_add_one_eq_two
Summable.tsum_add
IsTopologicalAddGroup.toContinuousAdd
SummationFilter.instNeBotUnconditional
Summable.subtype
Summable.prod
Subtype.val_injective
Equiv.injective
Function.Injective.prodMap
add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
tsum_eq_tsum_primes_of_support_subset_prime_powers ๐Ÿ“–mathematicalSummable
AddCommGroup.toAddCommMonoid
UniformSpace.toTopologicalSpace
SummationFilter.unconditional
Set
Set.instHasSubset
Function.support
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
setOf
IsPrimePow
Nat.instCommMonoidWithZero
tsum
Nat.Primes
Monoid.toNatPow
Nat.instMonoid
Nat.Prime
โ€”Equiv.summable_iff
Equiv.apply_symm_apply
Summable.subtype
tsum_subtype_eq_of_support_subset
Equiv.tsum_eq
Summable.tsum_prod
tsum_congr
Nat.Primes.coe_prodNatEquiv_apply

---

โ† Back to Index