Documentation Verification Report

AddCharacter

πŸ“ Source: Mathlib/NumberTheory/LegendreSymbol/AddCharacter.lean

Statistics

MetricCount
DefinitionsprimitiveChar, primitiveChar_to_Complex, IsPrimitive, PrimitiveAddChar, char, n, primitiveZModChar, zmodChar
8
TheoremsprimitiveChar_to_Complex_isPrimitive, compMulHom_of_isPrimitive, of_ne_one, zmod_char_eq_one_iff, prim, exists_divisor_of_not_isPrimitive, not_isPrimitive_mulShift, starComp_apply, starComp_eq_inv, sum_eq_card_of_eq_one, sum_eq_zero_of_ne_one, sum_mulShift, to_mulShift_inj_of_isPrimitive, val_mem_rootsOfUnity, zmodChar_apply, zmodChar_apply', zmodChar_primitive_of_primitive_root, zmod_char_ne_one_iff, zmod_char_primitive_of_eq_one_only_at_zero
19
Total27

AddChar

Definitions

NameCategoryTheorems
IsPrimitive πŸ“–MathDef
7 mathmath: zmod_char_primitive_of_eq_one_only_at_zero, ZMod.isPrimitive_stdAddChar, PrimitiveAddChar.prim, IsPrimitive.of_ne_one, FiniteField.primitiveChar_to_Complex_isPrimitive, zmodChar_primitive_of_primitive_root, not_isPrimitive_mulShift
PrimitiveAddChar πŸ“–CompDataβ€”
primitiveZModChar πŸ“–CompOpβ€”
zmodChar πŸ“–CompOp
3 mathmath: zmodChar_apply', zmodChar_apply, zmodChar_primitive_of_primitive_root

Theorems

NameKindAssumesProvesValidatesDepends On
exists_divisor_of_not_isPrimitive πŸ“–mathematicalIsPrimitive
ZMod
ZMod.commRing
CommRing.toCommMonoid
mulShift
CommRing.toRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddChar
AddMonoidWithOne.toAddMonoid
CommMonoid.toMonoid
instOne
β€”ZMod.eq_unit_mul_divisor
lt_of_le_of_ne
NeZero.pos
Nat.instCanonicallyOrderedAdd
ZMod.natCast_self
MulZeroClass.mul_zero
mulShift_unit_eq_one_iff
mul_comm
ext
mulShift_apply
mul_assoc
not_isPrimitive_mulShift πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
IsPrimitive
mulShift
CommRing.toRing
β€”mulShift_mulShift
mul_comm
mulShift_zero
starComp_apply πŸ“–mathematicalringChar
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
RingHom
Complex
Complex.instCommSemiring
RingHom.instFunLike
starRingEnd
Complex.instStarRing
AddChar
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
instFunLike
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
instCommGroup
Ring.toAddCommGroup
CommRing.toCommMonoid
Complex.commRing
β€”starComp_eq_inv
starComp_eq_inv πŸ“–mathematicalringChar
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidHom.compAddChar
Complex
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
RingHom.toMonoidHom
Complex.instCommSemiring
starRingEnd
Complex.instStarRing
AddChar
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
instCommGroup
Ring.toAddCommGroup
CommRing.toCommMonoid
Complex.commRing
β€”ext
inv_apply'
val_isUnit
Complex.norm_eq_one_of_mem_rootsOfUnity
NeZero.pnat
val_mem_rootsOfUnity
Complex.inv_eq_conj
sum_eq_card_of_eq_one πŸ“–mathematicalAddChar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instOne
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.univ
DFunLike.coe
instFunLike
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Fintype.card
β€”Finset.sum_congr
Finset.sum_const
nsmul_eq_mul
mul_one
sum_eq_zero_of_ne_one πŸ“–mathematicalβ€”Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.univ
DFunLike.coe
AddChar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instFunLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”ne_one_iff
Fintype.sum_bijective
AddGroup.addLeft_bijective
eq_zero_of_mul_eq_self_left
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
Finset.mul_sum
Finset.sum_congr
map_add_eq_mul
sum_mulShift πŸ“–mathematicalIsPrimitive
CommRing.toCommMonoid
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.univ
DFunLike.coe
AddChar
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instFunLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toNatCast
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Fintype.card
β€”Finset.sum_congr
MulZeroClass.mul_zero
map_zero_eq_one
Finset.sum_const
Nat.smul_one_eq_cast
mul_comm
Nat.cast_zero
sum_eq_zero_of_ne_one
to_mulShift_inj_of_isPrimitive πŸ“–mathematicalIsPrimitiveAddChar
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
CommMonoid.toMonoid
mulShift
β€”mulShift_mul
add_neg_cancel
mulShift_zero
val_mem_rootsOfUnity πŸ“–mathematicalringChar
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Units
CommMonoid.toMonoid
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
PNat.val
Nat.toPNat'
IsUnit.unit
DFunLike.coe
AddChar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
instFunLike
val_isUnit
β€”val_isUnit
Nat.toPNat'_coe
nsmul_eq_mul
CharP.cast_eq_zero
ringChar.charP
MulZeroClass.zero_mul
map_zero_eq_one
zmodChar_apply πŸ“–mathematicalMonoid.toNatPow
CommMonoid.toMonoid
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
DFunLike.coe
AddChar
ZMod
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
ZMod.commRing
instFunLike
zmodChar
ZMod.val
β€”β€”
zmodChar_apply' πŸ“–mathematicalMonoid.toNatPow
CommMonoid.toMonoid
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
DFunLike.coe
AddChar
ZMod
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
ZMod.commRing
instFunLike
zmodChar
AddMonoidWithOne.toNatCast
β€”pow_eq_pow_mod
zmodChar_apply
ZMod.val_natCast
zmodChar_primitive_of_primitive_root πŸ“–mathematicalIsPrimitiveRootIsPrimitive
ZMod
ZMod.commRing
zmodChar
Monoid.toNatPow
CommMonoid.toMonoid
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
IsPrimitiveRoot.iff_def
β€”zmod_char_primitive_of_eq_one_only_at_zero
IsPrimitiveRoot.iff_def
ZMod.val_eq_zero
ZMod.val_lt
NeZero.pos
Nat.instCanonicallyOrderedAdd
pow_zero
zmodChar_apply
zmod_char_ne_one_iff πŸ“–β€”β€”β€”β€”ne_one_iff
Mathlib.Tactic.Contrapose.contrapose₃
nsmul_eq_mul
mul_one
ZMod.natCast_zmod_val
map_nsmul_eq_pow
one_pow
zmod_char_primitive_of_eq_one_only_at_zero πŸ“–mathematicalZMod
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
IsPrimitiveβ€”Nat.cast_one
mul_one
mulShift_apply

AddChar.FiniteField

Definitions

NameCategoryTheorems
primitiveChar πŸ“–CompOpβ€”
primitiveChar_to_Complex πŸ“–CompOp
1 mathmath: primitiveChar_to_Complex_isPrimitive

Theorems

NameKindAssumesProvesValidatesDepends On
primitiveChar_to_Complex_isPrimitive πŸ“–mathematicalβ€”AddChar.IsPrimitive
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Complex
CommRing.toCommMonoid
Complex.commRing
primitiveChar_to_Complex
β€”AddChar.IsPrimitive.compMulHom_of_isPrimitive
AddChar.PrimitiveAddChar.prim
AlgEquiv.injective
CyclotomicField.instIsCyclotomicExtensionSingletonNatSetOfCharZero
Complex.instCharZero
IsSepClosedOfCharZero.isCyclotomicExtension
IsSepClosed.of_isAlgClosed
Complex.isAlgClosed

AddChar.IsPrimitive

Theorems

NameKindAssumesProvesValidatesDepends On
compMulHom_of_isPrimitive πŸ“–mathematicalAddChar.IsPrimitive
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
MonoidHom.instFunLike
MonoidHom.compAddChar
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
MonoidHom.compAddChar_injective_right
of_ne_one πŸ“–mathematicalβ€”AddChar.IsPrimitive
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”AddChar.mulShift_mulShift
mul_inv_cancelβ‚€
AddChar.mulShift_one
zmod_char_eq_one_iff πŸ“–mathematicalAddChar.IsPrimitive
ZMod
ZMod.commRing
DFunLike.coe
AddChar
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
CommMonoid.toMonoid
AddChar.instFunLike
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”not_imp_comm
AddChar.zmod_char_ne_one_iff
AddChar.mulShift_apply
mul_one
AddChar.map_zero_eq_one

AddChar.PrimitiveAddChar

Definitions

NameCategoryTheorems
char πŸ“–CompOp
1 mathmath: prim
n πŸ“–CompOp
1 mathmath: prim

Theorems

NameKindAssumesProvesValidatesDepends On
prim πŸ“–mathematicalβ€”AddChar.IsPrimitive
CyclotomicField
PNat.val
n
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CyclotomicField.instField
char
β€”β€”

---

← Back to Index