Documentation Verification Report

Basic

πŸ“ Source: Mathlib/NumberTheory/LegendreSymbol/Basic.lean

Statistics

MetricCount
DefinitionslegendreSym, hom
2
Theoremseuler_criterion, euler_criterion_units, exists_sq_eq_neg_one_iff, mod_four_ne_three_of_sq_eq_neg_one, mod_four_ne_three_of_sq_eq_neg_sq, mod_four_ne_three_of_sq_eq_neg_sq', pow_div_two_eq_neg_one_or_one, at_neg_one, at_one, at_zero, card_sqrts, eq_neg_one_iff, eq_neg_one_iff', eq_neg_one_iff_not_one, eq_one_iff, eq_one_iff', eq_one_of_sq_sub_mul_sq_eq_zero, eq_one_of_sq_sub_mul_sq_eq_zero', eq_one_or_neg_one, eq_pow, eq_zero_iff, eq_zero_mod_of_eq_neg_one, hom_apply, mul, prime_dvd_of_eq_neg_one, sq_one, sq_one'
27
Total29

ZMod

Theorems

NameKindAssumesProvesValidatesDepends On
euler_criterion πŸ“–mathematicalβ€”IsSquare
ZMod
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”sq
MulZeroClass.mul_zero
euler_criterion_units
euler_criterion_units πŸ“–mathematicalβ€”Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
Monoid.toNatPow
Units.instMonoid
Units.instOne
β€”instSubsingletonUnits
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
FiniteField.unit_isSquare_iff
ringChar_zmod_n
isSquare_iff_exists_sq
card
exists_sq_eq_neg_one_iff πŸ“–mathematicalβ€”IsSquare
ZMod
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
instField
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
FiniteField.isSquare_neg_one_iff
card
mod_four_ne_three_of_sq_eq_neg_one πŸ“–β€”ZMod
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”exists_sq_eq_neg_one_iff
pow_two
mod_four_ne_three_of_sq_eq_neg_sq πŸ“–β€”ZMod
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
β€”β€”mod_four_ne_three_of_sq_eq_neg_sq'
neg_eq_iff_eq_neg
mod_four_ne_three_of_sq_eq_neg_sq' πŸ“–β€”ZMod
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
β€”β€”mod_four_ne_three_of_sq_eq_neg_one
one_pow
div_self
div_pow
neg_div
pow_div_two_eq_neg_one_or_one πŸ“–mathematicalβ€”ZMod
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”Nat.Prime.eq_two_or_odd
Fact.out
Fintype.complete
NeZero.one
nontrivial
Nat.Prime.one_lt'
Nat.instAtLeastTwoHAddOfNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
one_pow
neg_eq_self_mod_two
mul_self_eq_one_iff
IsDomain.to_noZeroDivisors
instIsDomain
pow_add
two_mul
Nat.two_mul_odd_div_two
pow_card_sub_one_eq_one

(root)

Definitions

NameCategoryTheorems
legendreSym πŸ“–CompOp
31 mathmath: legendreSym.eq_neg_one_iff, legendreSym.eq_one_or_neg_one, legendreSym.mod, legendreSym.sq_one, jacobiSym.legendreSym.to_jacobiSym, legendreSym.eq_neg_one_iff_not_one, legendreSym.at_two, legendreSym.quadratic_reciprocity_three_mod_four, legendreSym.hom_apply, legendreSym.eq_one_iff, legendreSym.sq_one', legendreSym.quadratic_reciprocity', ZMod.gauss_lemma, legendreSym_mersenne_two, legendreSym.eq_zero_iff, Mathlib.Meta.NormNum.LegendreSym.to_jacobiSym, legendreSym.at_zero, legendreSym.eq_one_iff', legendreSym.eq_pow, legendreSym.at_neg_one, legendreSym.card_sqrts, legendreSym.eq_one_of_sq_sub_mul_sq_eq_zero', legendreSym.eq_neg_one_iff', legendreSym.at_neg_two, ZMod.eisenstein_lemma, legendreSym.mul, legendreSym.eq_one_of_sq_sub_mul_sq_eq_zero, legendreSym.at_one, legendreSym_mersenne_three, legendreSym.quadratic_reciprocity, legendreSym.quadratic_reciprocity_one_mod_four

legendreSym

Definitions

NameCategoryTheorems
hom πŸ“–CompOp
1 mathmath: hom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
at_neg_one πŸ“–mathematicalβ€”legendreSym
DFunLike.coe
MulChar
ZMod
CommRing.toCommMonoid
ZMod.commRing
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
ZMod.Ο‡β‚„
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
Int.cast_neg
Int.cast_one
quadraticChar_neg_one
ZMod.ringChar_zmod_n
ZMod.card
at_one πŸ“–mathematicalβ€”legendreSymβ€”eq_1
Int.cast_one
MulChar.map_one
at_zero πŸ“–mathematicalβ€”legendreSymβ€”eq_1
Int.cast_zero
MulChar.map_zero
ZMod.nontrivial
Nat.Prime.one_lt'
card_sqrts πŸ“–mathematicalβ€”Finset.card
ZMod
Set.toFinset
setOf
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ZMod.instField
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Subtype.fintype
Set
Set.instMembership
Set.decidableSetOf
ZMod.decidableEq
ZMod.fintype
NeZero.of_gt'
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Nat.instPreorder
Nat.instCanonicallyOrderedAdd
Nat.instOne
Nat.Prime.one_lt'
legendreSym
β€”quadraticChar_card_sqrts
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
ZMod.ringChar_zmod_n
eq_neg_one_iff πŸ“–mathematicalβ€”legendreSym
IsSquare
ZMod
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
ZMod.instField
β€”quadraticChar_neg_one_iff_not_isSquare
eq_neg_one_iff' πŸ“–mathematicalβ€”legendreSym
IsSquare
ZMod
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
ZMod.instField
β€”eq_neg_one_iff
Int.cast_natCast
eq_neg_one_iff_not_one πŸ“–mathematicalβ€”legendreSymβ€”quadraticChar_eq_neg_one_iff_not_one
eq_one_iff πŸ“–mathematicalβ€”legendreSym
IsSquare
ZMod
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
ZMod.instField
β€”quadraticChar_one_iff_isSquare
eq_one_iff' πŸ“–mathematicalβ€”legendreSym
IsSquare
ZMod
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
ZMod.instField
β€”eq_one_iff
Nat.cast_zero
Int.cast_zero
Int.cast_natCast
eq_one_of_sq_sub_mul_sq_eq_zero πŸ“–mathematicalZMod
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
ZMod.instField
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
AddGroupWithOne.toIntCast
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
legendreSymβ€”eq_one_iff
pow_two
sub_eq_zero
mul_one
one_pow
mul_inv_cancelβ‚€
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_inv_one
Mathlib.Tactic.Ring.mul_one
MulZeroClass.zero_mul
eq_one_of_sq_sub_mul_sq_eq_zero' πŸ“–mathematicalZMod
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
ZMod.instField
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
AddGroupWithOne.toIntCast
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
legendreSymβ€”eq_one_of_sq_sub_mul_sq_eq_zero
sq_eq_zero_iff
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
ZMod.instIsDomain
sub_zero
MulZeroClass.mul_zero
zero_pow
two_ne_zero
eq_one_or_neg_one πŸ“–mathematicalβ€”legendreSymβ€”quadraticChar_dichotomy
eq_pow πŸ“–mathematicalβ€”ZMod
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
ZMod.instField
legendreSym
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”eq_or_ne
eq_1
quadraticChar_zero
zero_pow
LT.lt.ne'
Nat.Prime.two_le
Fact.out
Nat.cast_zero
Int.cast_zero
ZMod.ringChar_zmod_n
quadraticChar_eq_one_of_char_two
Int.cast_one
Fintype.complete
NeZero.one
ZMod.nontrivial
Nat.Prime.one_lt'
one_pow
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
ZMod.card
quadraticChar_eq_pow_of_char_ne_two'
eq_zero_iff πŸ“–mathematicalβ€”legendreSym
ZMod
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
ZMod.instField
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
β€”quadraticChar_eq_zero_iff
eq_zero_mod_of_eq_neg_one πŸ“–β€”legendreSym
ZMod
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
ZMod.instField
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
AddGroupWithOne.toIntCast
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”β€”eq_zero_iff
imp_iff_or_not
one_ne_zero
CharZero.eq_neg_self_iff
IsStrictOrderedRing.noZeroDivisors
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Int.instCharZero
eq_one_of_sq_sub_mul_sq_eq_zero'
eq_one_of_sq_sub_mul_sq_eq_zero
hom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Int.instSemiring
MonoidWithZeroHom.funLike
hom
legendreSym
β€”β€”
mul πŸ“–mathematicalβ€”legendreSymβ€”Int.cast_mul
map_mul
MonoidHomClass.toMulHomClass
MulCharClass.toMonoidHomClass
MulChar.instMulCharClass
prime_dvd_of_eq_neg_one πŸ“–β€”legendreSym
Monoid.toNatPow
Int.instMonoid
β€”β€”eq_zero_mod_of_eq_neg_one
Int.cast_sub
Int.cast_pow
Int.cast_mul
sq_one πŸ“–mathematicalβ€”Monoid.toNatPow
Int.instMonoid
legendreSym
β€”quadraticChar_sq_one
sq_one' πŸ“–mathematicalβ€”legendreSym
Monoid.toNatPow
Int.instMonoid
β€”Int.cast_pow
quadraticChar_sq_one'

---

← Back to Index