Documentation Verification Report

GaussEisensteinLemmas

πŸ“ Source: Mathlib/NumberTheory/LegendreSymbol/GaussEisensteinLemmas.lean

Statistics

MetricCount
Definitions0
TheoremsIco_map_valMinAbs_natAbs_eq_Ico_map_id, div_eq_filter_card, eisenstein_lemma, eisenstein_lemma_aux, gauss_lemma, gauss_lemma_aux, sum_mul_div_add_sum_mul_div_eq_mul
7
Total7

ZMod

Theorems

NameKindAssumesProvesValidatesDepends On
Ico_map_valMinAbs_natAbs_eq_Ico_map_id πŸ“–mathematicalβ€”Multiset.map
valMinAbs
ZMod
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
Finset.val
Finset.Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
β€”lt_of_le_of_lt
Nat.Prime.pos
Fact.out
not_lt_of_ge
IsDomain.to_noZeroDivisors
instIsDomain
CharP.cast_eq_zero_iff
charP
Nat.instNoMaxOrder
natAbs_valMinAbs_le
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
Finset.mem_Ico
div_eq_mul_inv
natCast_natAbs_valMinAbs
mul_div_cancelβ‚€
valMinAbs_def_pos
val_cast_of_lt
mul_neg
natAbs_valMinAbs_neg
Multiset.map_eq_map_of_bij_of_nodup
Finset.nodup
Finset.inj_on_of_surj_on_of_card_le
le_rfl
div_eq_filter_card πŸ“–mathematicalβ€”Finset.card
Finset.filter
Finset.Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
β€”Nat.card_Ico
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Finset.ext
le_trans
Nat.instNoMaxOrder
eisenstein_lemma πŸ“–mathematicalβ€”legendreSym
Monoid.toNatPow
Int.instMonoid
Finset.sum
Nat.instAddCommMonoid
Finset.Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
β€”Nat.cast_zero
Int.cast_zero
Int.cast_natCast
neg_one_pow_eq_pow_mod_two
gauss_lemma
eisenstein_lemma_aux
Nat.Prime.mod_two_eq_one_iff_ne_two
Fact.out
eisenstein_lemma_aux πŸ“–mathematicalβ€”Nat.ModEq
Finset.card
Finset.filter
val
ZMod
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
Finset.Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
Finset.sum
Nat.instAddCommMonoid
β€”Nat.fact_prime_two
natCast_eq_natCast_iff
sub_eq_zero
Finset.sum_congr
mul_comm
Nat.cast_sum
sub_eq_add_neg
neg_eq_self_mod_two
add_assoc
add_left_comm
Nat.cast_mul
Nat.cast_one
mul_one
AddLeftCancelSemigroup.toIsLeftCancelAdd
gauss_lemma πŸ“–mathematicalβ€”legendreSym
Monoid.toNatPow
Int.instMonoid
Finset.card
Finset.filter
val
ZMod
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Finset.Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
β€”Nat.Prime.odd_of_ne_two
Fact.out
legendreSym.eq_pow
gauss_lemma_aux
legendreSym.eq_one_or_neg_one
neg_one_pow_eq_or
Int.cast_one
Int.cast_neg
ne_neg_self
one_ne_zero
NeZero.one
nontrivial
Nat.Prime.one_lt'
gauss_lemma_aux πŸ“–mathematicalβ€”ZMod
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Int.instMonoid
Finset.card
Finset.filter
val
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Finset.Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
β€”mul_left_inj'
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
CharP.cast_eq_zero_iff
charP
Nat.Prime.dvd_factorial
Fact.out
not_le
Nat.Prime.pos
Int.cast_pow
Int.cast_neg
Int.cast_one
Finset.filter.congr_simp
sum_mul_div_add_sum_mul_div_eq_mul πŸ“–mathematicalβ€”Finset.sum
Nat.instAddCommMonoid
Finset.Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
β€”Finset.card_equiv
Finset.disjoint_filter
lt_of_le_of_lt
Nat.Prime.pos
Fact.out
Nat.cast_mul
CharP.cast_eq_zero
charP
MulZeroClass.mul_zero
IsDomain.to_noZeroDivisors
instIsDomain
le_antisymm
val_zero
val_cast_of_lt
Nat.instCanonicallyOrderedAdd
Finset.ext
le_total
Finset.card_union_of_disjoint
Finset.card_product
Nat.card_Ico
tsub_zero
Nat.instOrderedSub

---

← Back to Index