Documentation Verification Report

JacobiSymbol

πŸ“ Source: Mathlib/NumberTheory/LegendreSymbol/JacobiSymbol.lean

Statistics

MetricCount
Definitions«termJ(_|_)»»), qrSign
2
TheoremsisSquare_of_jacobiSym_eq_one, nonsquare_iff_jacobiSym_eq_neg_one, nonsquare_of_jacobiSym_eq_neg_one, at_neg_one, at_neg_two, at_two, div_four_left, eq_neg_one_at_prime_divisor_of_eq_neg_one, eq_one_or_neg_one, eq_zero_iff, eq_zero_iff_not_coprime, even_odd, to_jacobiSym, list_prod_left, list_prod_right, mod_left, mod_left', mod_right, mod_right', mul_left, mul_right, mul_right', ne_zero, neg, one_left, one_right, pow_left, pow_right, prime_dvd_of_eq_neg_one, quadratic_reciprocity, quadratic_reciprocity', quadratic_reciprocity_if, quadratic_reciprocity_one_mod_four, quadratic_reciprocity_one_mod_four', quadratic_reciprocity_three_mod_four, sq_one, sq_one', trichotomy, value_at, zero_left, zero_right, eq_iff_eq, mul_left, mul_right, neg_one_pow, sq_eq_one
46
Total48

NumberTheorySymbols

Definitions

NameCategoryTheorems
Β«termJ(_|_)Β» πŸ“–Β» "API Documentation")CompOpβ€”

ZMod

Theorems

NameKindAssumesProvesValidatesDepends On
isSquare_of_jacobiSym_eq_one πŸ“–mathematicaljacobiSymIsSquare
ZMod
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
β€”nonsquare_iff_jacobiSym_eq_neg_one
nonsquare_iff_jacobiSym_eq_neg_one πŸ“–mathematicalβ€”jacobiSym
IsSquare
ZMod
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
β€”jacobiSym.legendreSym.to_jacobiSym
legendreSym.eq_neg_one_iff
nonsquare_of_jacobiSym_eq_neg_one πŸ“–mathematicaljacobiSymIsSquare
ZMod
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
CommRing.toRing
β€”jacobiSym.mod_left
sq
intCast_eq_intCast_iff'
Int.cast_mul
coe_valMinAbs
jacobiSym.pow_left
sq_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
Int.instAddLeftMono

(root)

Definitions

NameCategoryTheorems
qrSign πŸ“–CompOp
7 mathmath: qrSign.neg_one_pow, qrSign.sq_eq_one, qrSign.symm, qrSign.eq_iff_eq, qrSign.mul_left, qrSign.mul_right, jacobiSym.quadratic_reciprocity'

jacobiSym

Theorems

NameKindAssumesProvesValidatesDepends On
at_neg_one πŸ“–mathematicalOdd
Nat.instSemiring
jacobiSym
DFunLike.coe
MulChar
ZMod
CommRing.toCommMonoid
ZMod.commRing
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
ZMod.Ο‡β‚„
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”value_at
legendreSym.at_neg_one
at_neg_two πŸ“–mathematicalOdd
Nat.instSemiring
jacobiSym
DFunLike.coe
MulChar
ZMod
CommRing.toCommMonoid
ZMod.commRing
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
ZMod.Ο‡β‚ˆ'
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”value_at
legendreSym.at_neg_two
at_two πŸ“–mathematicalOdd
Nat.instSemiring
jacobiSym
DFunLike.coe
MulChar
ZMod
CommRing.toCommMonoid
ZMod.commRing
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
ZMod.Ο‡β‚ˆ
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”value_at
legendreSym.at_two
div_four_left πŸ“–mathematicalβ€”jacobiSymβ€”mul_left
sq_one'
one_mul
eq_neg_one_at_prime_divisor_of_eq_neg_one πŸ“–mathematicaljacobiSymNat.Primeβ€”one_ne_zero
CharZero.eq_neg_self_iff
NormMulClass.toNoZeroDivisors
Int.instNormMulClass
Int.instCharZero
zero_right
LT.lt.ne
Nat.pos_of_mem_primeFactorsList
List.neg_one_mem_of_prod_eq_neg_one
list_prod_right
Nat.prod_primeFactorsList
Nat.prime_of_mem_primeFactorsList
Nat.dvd_of_mem_primeFactorsList
eq_one_or_neg_one πŸ“–mathematicalβ€”jacobiSymβ€”trichotomy
ne_zero
eq_zero_iff πŸ“–mathematicalβ€”jacobiSymβ€”eq_or_ne
zero_right
ne_zero
eq_zero_iff_not_coprime
eq_zero_iff_not_coprime πŸ“–mathematicalβ€”jacobiSymβ€”Nat.prime_of_mem_primeFactorsList
List.prod_eq_zero_iff
Int.instNontrivial
NormMulClass.toNoZeroDivisors
Int.instNormMulClass
Int.gcd_eq_natAbs
Nat.Prime.not_coprime_iff_dvd
legendreSym.eq_zero_iff
Nat.mem_primeFactorsList
even_odd πŸ“–mathematicalβ€”jacobiSymβ€”mul_left
at_two
Nat.odd_iff
ZMod.Ο‡β‚ˆ_nat_eq_if_mod_eight
list_prod_left πŸ“–mathematicalβ€”jacobiSym
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
β€”one_left
mul_left
list_prod_right πŸ“–mathematicalβ€”jacobiSym
Nat.instOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
β€”one_right
List.prod_ne_zero
Nat.instNontrivial
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
mul_right'
mod_left πŸ“–mathematicalβ€”jacobiSymβ€”Nat.prime_of_mem_primeFactorsList
legendreSym.mod
Nat.dvd_of_mem_primeFactorsList
mod_left' πŸ“–mathematicalβ€”jacobiSymβ€”mod_left
mod_right πŸ“–mathematicalOdd
Nat.instSemiring
jacobiSymβ€”mod_right'
Odd.mod_even
Even.mul_right
Distrib.rightDistribClass
neg
ZMod.Ο‡β‚„_nat_mod_four
dvd_mul_right
mod_right' πŸ“–mathematicalOdd
Nat.instSemiring
jacobiSymβ€”eq_or_ne
MulZeroClass.mul_zero
Odd.mod_even
Even.mul_right
Distrib.rightDistribClass
Nat.exists_eq_pow_mul_and_not_dvd
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
Nat.odd_iff
Nat.two_dvd_ne_zero
Nat.cast_mul
mul_left
quadratic_reciprocity'
Nat.cast_pow
pow_left
Nat.cast_two
at_two
pow_zero
ZMod.Ο‡β‚ˆ_nat_mod_eight
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsNat.of_raw
ZMod.Ο‡β‚„_nat_mod_four
dvd_mul_right
mod_left
Int.natCast_mod
dvd_mul_left
mul_left πŸ“–mathematicalβ€”jacobiSymβ€”Nat.prime_of_mem_primeFactorsList
legendreSym.mul
List.prod_map_mul
mul_right πŸ“–mathematicalβ€”jacobiSymβ€”mul_right'
mul_right' πŸ“–mathematicalβ€”jacobiSymβ€”Nat.prime_of_mem_primeFactorsList
eq_1
List.Perm.prod_eq
Nat.perm_primeFactorsList_mul
ne_zero πŸ“–β€”β€”β€”β€”eq_zero_or_neZero
zero_right
one_ne_zero
Mathlib.Tactic.Contrapose.contrapose₃
eq_zero_iff_not_coprime
neg πŸ“–mathematicalOdd
Nat.instSemiring
jacobiSym
DFunLike.coe
MulChar
ZMod
CommRing.toCommMonoid
ZMod.commRing
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
ZMod.Ο‡β‚„
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”neg_eq_neg_one_mul
mul_left
at_neg_one
one_left πŸ“–mathematicalβ€”jacobiSymβ€”List.prod_eq_one
Nat.prime_of_mem_primeFactorsList
legendreSym.at_one
one_right πŸ“–mathematicalβ€”jacobiSymβ€”Nat.prime_of_mem_primeFactorsList
Nat.primeFactorsList_one
pow_left πŸ“–mathematicalβ€”jacobiSym
Monoid.toNatPow
Int.instMonoid
β€”pow_zero
one_left
pow_succ
mul_left
pow_right πŸ“–mathematicalβ€”jacobiSym
Monoid.toNatPow
Nat.instMonoid
Int.instMonoid
β€”pow_zero
one_right
eq_zero_or_neZero
zero_pow
zero_right
one_pow
pow_succ
mul_right
prime_dvd_of_eq_neg_one πŸ“–β€”jacobiSym
Monoid.toNatPow
Int.instMonoid
β€”β€”legendreSym.prime_dvd_of_eq_neg_one
legendreSym.to_jacobiSym
quadratic_reciprocity πŸ“–mathematicalOdd
Nat.instSemiring
jacobiSym
Monoid.toNatPow
Int.instMonoid
β€”qrSign.neg_one_pow
qrSign.symm
quadratic_reciprocity'
quadratic_reciprocity' πŸ“–mathematicalOdd
Nat.instSemiring
jacobiSym
qrSign
β€”one_left
mul_one
qrSign.mul_left
Nat.cast_mul
mul_left
mul_mul_mul_comm
value_at
Nat.Prime.eq_two_or_odd'
legendreSym.to_jacobiSym
Nat.cast_id
qrSign.eq_iff_eq
qrSign.symm
qrSign.neg_one_pow
legendreSym.quadratic_reciprocity'
quadratic_reciprocity_if πŸ“–mathematicalβ€”jacobiSymβ€”Nat.odd_mod_four_iff
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
quadratic_reciprocity_one_mod_four'
Nat.odd_iff
quadratic_reciprocity_one_mod_four
quadratic_reciprocity_three_mod_four
quadratic_reciprocity_one_mod_four πŸ“–mathematicalOdd
Nat.instSemiring
jacobiSymβ€”quadratic_reciprocity
Nat.odd_iff
Nat.odd_of_mod_four_eq_one
pow_mul
ZMod.neg_one_pow_div_two_of_one_mod_four
one_pow
one_mul
quadratic_reciprocity_one_mod_four' πŸ“–mathematicalOdd
Nat.instSemiring
jacobiSymβ€”quadratic_reciprocity_one_mod_four
quadratic_reciprocity_three_mod_four πŸ“–mathematicalβ€”jacobiSymβ€”ZMod.neg_one_pow_div_two_of_three_mod_four
quadratic_reciprocity
Nat.odd_iff
Nat.odd_of_mod_four_eq_three
pow_mul
neg_one_mul
sq_one πŸ“–mathematicalβ€”Monoid.toNatPow
Int.instMonoid
jacobiSym
β€”eq_one_or_neg_one
sq_one' πŸ“–mathematicalβ€”jacobiSym
Monoid.toNatPow
Int.instMonoid
β€”pow_left
sq_one
trichotomy πŸ“–mathematicalβ€”jacobiSymβ€”Submonoid.list_prod_mem
MonoidHom.instMonoidHomClass
Set.pair_comm
SignType.range_eq
Nat.prime_of_mem_primeFactorsList
quadraticChar_isQuadratic
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
value_at πŸ“–mathematicallegendreSym
Nat.Prime
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Int.instSemiring
MonoidHom.instFunLike
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Odd
Nat.instSemiring
jacobiSymβ€”Nat.prod_primeFactorsList
LT.lt.ne'
Odd.pos
Nat.instCanonicallyOrderedAdd
Nat.instNontrivial
Nat.cast_list_prod
map_list_prod
MonoidHom.instMonoidHomClass
Nat.prime_of_mem_primeFactorsList
eq_1
Odd.ne_two_of_dvd_nat
Nat.dvd_of_mem_primeFactorsList
zero_left πŸ“–mathematicalβ€”jacobiSymβ€”eq_zero_iff_not_coprime
ne_zero_of_lt
LT.lt.ne'
zero_right πŸ“–mathematicalβ€”jacobiSymβ€”Nat.prime_of_mem_primeFactorsList
Nat.primeFactorsList_zero

jacobiSym.legendreSym

Theorems

NameKindAssumesProvesValidatesDepends On
to_jacobiSym πŸ“–mathematicalβ€”legendreSym
jacobiSym
β€”Nat.prime_of_mem_primeFactorsList
Nat.primeFactorsList_prime
Fact.out
mul_one

qrSign

Theorems

NameKindAssumesProvesValidatesDepends On
eq_iff_eq πŸ“–mathematicalOdd
Nat.instSemiring
qrSignβ€”mul_assoc
pow_two
sq_eq_one
one_mul
mul_left πŸ“–mathematicalβ€”qrSignβ€”Nat.cast_mul
map_mul
MonoidHomClass.toMulHomClass
MulCharClass.toMonoidHomClass
MulChar.instMulCharClass
jacobiSym.mul_left
mul_right πŸ“–mathematicalβ€”qrSignβ€”jacobiSym.mul_right
neg_one_pow πŸ“–mathematicalOdd
Nat.instSemiring
qrSign
Monoid.toNatPow
Int.instMonoid
β€”eq_1
pow_mul
ZMod.Ο‡β‚„_eq_neg_one_pow
Nat.odd_iff
Nat.odd_mod_four_iff
ZMod.Ο‡β‚„_nat_one_mod_four
jacobiSym.one_left
one_pow
ZMod.Ο‡β‚„_nat_three_mod_four
jacobiSym.at_neg_one
sq_eq_one πŸ“–mathematicalOdd
Nat.instSemiring
Monoid.toNatPow
Int.instMonoid
qrSign
β€”neg_one_pow
pow_mul
mul_comm
neg_one_sq
one_pow

---

← Back to Index