Documentation Verification Report

Basic

πŸ“ Source: Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean

Statistics

MetricCount
DefinitionsquadraticChar, quadraticCharFun
2
TheoremsisSquare_neg_one_iff, quadraticCharFun_eq_one_of_char_two, quadraticCharFun_eq_pow_of_char_ne_two, quadraticCharFun_eq_zero_iff, quadraticCharFun_mul, quadraticCharFun_one, quadraticCharFun_zero, quadraticChar_apply, quadraticChar_card_sqrts, quadraticChar_dichotomy, quadraticChar_eq_neg_one_iff_not_one, quadraticChar_eq_one_of_char_two, quadraticChar_eq_pow_of_char_ne_two, quadraticChar_eq_pow_of_char_ne_two', quadraticChar_eq_zero_iff, quadraticChar_exists_neg_one, quadraticChar_exists_neg_one', quadraticChar_isQuadratic, quadraticChar_ne_one, quadraticChar_neg_one, quadraticChar_neg_one_iff_not_isSquare, quadraticChar_one_iff_isSquare, quadraticChar_sq_one, quadraticChar_sq_one', quadraticChar_sum_zero, quadraticChar_zero
26
Total28

FiniteField

Theorems

NameKindAssumesProvesValidatesDepends On
isSquare_neg_one_iff πŸ“–mathematicalβ€”IsSquare
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”isSquare_of_char_two
Finite.of_fintype
one_ne_zero
Nat.odd_of_mod_four_eq_three
even_card_of_char_two
odd_card_of_char_ne_two
quadraticChar_one_iff_isSquare
neg_ne_zero
one_ne_zero'
NeZero.one
IsLocalRing.toNontrivial
Field.instIsLocalRing
quadraticChar_neg_one
ZMod.Ο‡β‚„_nat_eq_if_mod_four

(root)

Definitions

NameCategoryTheorems
quadraticChar πŸ“–CompOp
22 mathmath: quadraticChar_card_sqrts, quadraticChar_card_card, quadraticChar_two, quadraticChar_isQuadratic, quadraticChar_dichotomy, quadraticChar_sum_zero, quadraticChar_eq_zero_iff, quadraticChar_zero, quadraticChar_exists_neg_one', quadraticChar_neg_two, quadraticChar_eq_one_of_char_two, quadraticChar_sq_one, quadraticChar_odd_prime, quadraticChar_sq_one', quadraticChar_apply, quadraticChar_neg_one_iff_not_isSquare, quadraticChar_eq_pow_of_char_ne_two, quadraticChar_eq_pow_of_char_ne_two', quadraticChar_neg_one, quadraticChar_eq_neg_one_iff_not_one, quadraticChar_one_iff_isSquare, quadraticChar_exists_neg_one
quadraticCharFun πŸ“–CompOp
7 mathmath: quadraticCharFun_eq_zero_iff, quadraticCharFun_eq_one_of_char_two, quadraticCharFun_one, quadraticCharFun_mul, quadraticCharFun_eq_pow_of_char_ne_two, quadraticChar_apply, quadraticCharFun_zero

Theorems

NameKindAssumesProvesValidatesDepends On
quadraticCharFun_eq_one_of_char_two πŸ“–mathematicalringChar
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
quadraticCharFun
Semiring.toMonoidWithZero
Fintype.IsSquare.decidablePred
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”FiniteField.isSquare_of_char_two
Finite.of_fintype
quadraticCharFun_eq_pow_of_char_ne_two πŸ“–mathematicalβ€”quadraticCharFun
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Fintype.IsSquare.decidablePred
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Monoid.toNatPow
MonoidWithZero.toMonoid
Fintype.card
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”FiniteField.isSquare_iff
quadraticCharFun_eq_zero_iff πŸ“–mathematicalβ€”quadraticCharFun
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Fintype.IsSquare.decidablePred
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”β€”
quadraticCharFun_mul πŸ“–mathematicalβ€”quadraticCharFun
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Fintype.IsSquare.decidablePred
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”MulZeroClass.zero_mul
quadraticCharFun_zero
MulZeroClass.mul_zero
mul_ne_zero
IsDomain.to_noZeroDivisors
instIsDomain
quadraticCharFun_eq_one_of_char_two
mul_one
quadraticCharFun_eq_pow_of_char_ne_two
mul_pow
FiniteField.pow_dichotomy
Ring.neg_one_ne_one_of_char_ne_two
IsLocalRing.toNontrivial
Field.instIsLocalRing
mul_neg
neg_neg
quadraticCharFun_one πŸ“–mathematicalβ€”quadraticCharFun
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Fintype.IsSquare.decidablePred
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”NeZero.one
IsLocalRing.toNontrivial
Field.instIsLocalRing
quadraticCharFun_zero πŸ“–mathematicalβ€”quadraticCharFun
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Fintype.IsSquare.decidablePred
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”β€”
quadraticChar_apply πŸ“–mathematicalβ€”DFunLike.coe
MulChar
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
quadraticChar
quadraticCharFun
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Fintype.IsSquare.decidablePred
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”
quadraticChar_card_sqrts πŸ“–mathematicalβ€”Finset.card
Set.toFinset
setOf
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Subtype.fintype
Set
Set.instMembership
Set.decidableSetOf
DFunLike.coe
MulChar
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
quadraticChar
β€”Set.toFinset_congr
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
Set.toFinset_card
MulChar.map_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
quadraticChar_one_iff_isSquare
Finset.ext
Set.toFinset_setOf
pow_two
List.toFinset_cons
Finset.instLawfulSingleton
sq_eq_sq_iff_eq_or_eq_neg
Nat.cast_one
Int.instCharZero
List.toFinset_nil
Finset.card_pair
Ring.eq_self_iff_eq_zero_of_char_ne_two
mul_self_eq_zero
quadraticChar_neg_one_iff_not_isSquare
neg_add_cancel
Finset.filter.congr_simp
quadraticChar_dichotomy πŸ“–mathematicalβ€”DFunLike.coe
MulChar
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
quadraticChar
β€”sq_eq_one_iff
IsStrictOrderedRing.noZeroDivisors
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
quadraticChar_sq_one
quadraticChar_eq_neg_one_iff_not_one πŸ“–mathematicalβ€”DFunLike.coe
MulChar
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
quadraticChar
β€”quadraticChar_dichotomy
quadraticChar_eq_one_of_char_two πŸ“–mathematicalringChar
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DFunLike.coe
MulChar
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
quadraticChar
β€”quadraticCharFun_eq_one_of_char_two
quadraticChar_eq_pow_of_char_ne_two πŸ“–mathematicalβ€”DFunLike.coe
MulChar
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
quadraticChar
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Fintype.card
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”quadraticCharFun_eq_pow_of_char_ne_two
quadraticChar_eq_pow_of_char_ne_two' πŸ“–mathematicalβ€”AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
MulChar
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
quadraticChar
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Fintype.card
β€”Fintype.one_lt_card
IsLocalRing.toNontrivial
Field.instIsLocalRing
two_pos
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
quadraticCharFun_zero
Int.cast_zero
zero_pow
LT.lt.ne'
quadraticChar_eq_pow_of_char_ne_two
Int.cast_one
FiniteField.pow_dichotomy
Int.cast_ite
Int.cast_neg
quadraticChar_eq_zero_iff πŸ“–mathematicalβ€”DFunLike.coe
MulChar
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
quadraticChar
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”quadraticCharFun_eq_zero_iff
quadraticChar_exists_neg_one πŸ“–mathematicalβ€”DFunLike.coe
MulChar
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
quadraticChar
β€”quadraticChar_neg_one_iff_not_isSquare
FiniteField.exists_nonsquare
Finite.of_fintype
quadraticChar_exists_neg_one' πŸ“–mathematicalβ€”DFunLike.coe
MulChar
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
quadraticChar
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”Mathlib.Tactic.Contrapose.contrapose₁
ne_of_eq_of_ne
MulChar.map_nonunit
zero_eq_neg
one_ne_zero
quadraticChar_exists_neg_one
quadraticChar_isQuadratic πŸ“–mathematicalβ€”MulChar.IsQuadratic
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Int.instCommRing
quadraticChar
β€”quadraticChar_zero
quadraticChar_dichotomy
quadraticChar_ne_one πŸ“–β€”β€”β€”β€”quadraticChar_exists_neg_one'
MulChar.one_apply
Units.isUnit
quadraticChar_neg_one πŸ“–mathematicalβ€”DFunLike.coe
MulChar
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
quadraticChar
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
ZMod
ZMod.commRing
ZMod.Ο‡β‚„
AddMonoidWithOne.toNatCast
CommRing.toRing
Fintype.card
β€”quadraticChar_eq_pow_of_char_ne_two
neg_ne_zero
one_ne_zero
NeZero.one
IsLocalRing.toNontrivial
Field.instIsLocalRing
ZMod.Ο‡β‚„_eq_neg_one_pow
FiniteField.odd_card_of_char_ne_two
Nat.even_or_odd
Even.neg_one_pow
Odd.neg_one_pow
Ring.neg_one_ne_one_of_char_ne_two
quadraticChar_neg_one_iff_not_isSquare πŸ“–mathematicalβ€”DFunLike.coe
MulChar
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
quadraticChar
IsSquare
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”MulChar.map_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
quadraticChar_eq_neg_one_iff_not_one
quadraticChar_one_iff_isSquare
quadraticChar_one_iff_isSquare πŸ“–mathematicalβ€”DFunLike.coe
MulChar
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
quadraticChar
IsSquare
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”
quadraticChar_sq_one πŸ“–mathematicalβ€”Monoid.toNatPow
Int.instMonoid
DFunLike.coe
MulChar
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
quadraticChar
β€”pow_two
map_mul
MonoidHomClass.toMulHomClass
MulCharClass.toMonoidHomClass
MulChar.instMulCharClass
quadraticChar_sq_one'
quadraticChar_sq_one' πŸ“–mathematicalβ€”DFunLike.coe
MulChar
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
quadraticChar
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
quadraticChar_sum_zero πŸ“–mathematicalβ€”Finset.sum
Int.instAddCommMonoid
Finset.univ
DFunLike.coe
MulChar
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
quadraticChar
β€”MulChar.sum_eq_zero_of_ne_one
Int.instIsDomain
quadraticChar_ne_one
quadraticChar_zero πŸ“–mathematicalβ€”DFunLike.coe
MulChar
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
quadraticChar
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”quadraticCharFun_zero

---

← Back to Index