π Source: Mathlib/NumberTheory/LegendreSymbol/QuadraticChar/Basic.lean
quadraticChar
quadraticCharFun
isSquare_neg_one_iff
quadraticCharFun_eq_one_of_char_two
quadraticCharFun_eq_pow_of_char_ne_two
quadraticCharFun_eq_zero_iff
quadraticCharFun_mul
quadraticCharFun_one
quadraticCharFun_zero
quadraticChar_apply
quadraticChar_card_sqrts
quadraticChar_dichotomy
quadraticChar_eq_neg_one_iff_not_one
quadraticChar_eq_one_of_char_two
quadraticChar_eq_pow_of_char_ne_two
quadraticChar_eq_pow_of_char_ne_two'
quadraticChar_eq_zero_iff
quadraticChar_exists_neg_one
quadraticChar_exists_neg_one'
quadraticChar_isQuadratic
quadraticChar_ne_one
quadraticChar_neg_one
quadraticChar_neg_one_iff_not_isSquare
quadraticChar_one_iff_isSquare
quadraticChar_sq_one
quadraticChar_sq_one'
quadraticChar_sum_zero
quadraticChar_zero
IsSquare
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
isSquare_of_char_two
Finite.of_fintype
one_ne_zero
Nat.odd_of_mod_four_eq_three
even_card_of_char_two
odd_card_of_char_ne_two
neg_ne_zero
one_ne_zero'
NeZero.one
IsLocalRing.toNontrivial
Field.instIsLocalRing
ZMod.Οβ_nat_eq_if_mod_four
quadraticChar_card_card
quadraticChar_two
quadraticChar_neg_two
quadraticChar_odd_prime
ringChar
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Semiring.toMonoidWithZero
Fintype.IsSquare.decidablePred
FiniteField.isSquare_of_char_two
Monoid.toNatPow
MonoidWithZero.toMonoid
Fintype.card
FiniteField.isSquare_iff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
MulZeroClass.zero_mul
MulZeroClass.mul_zero
mul_ne_zero
IsDomain.to_noZeroDivisors
instIsDomain
mul_one
mul_pow
FiniteField.pow_dichotomy
Ring.neg_one_ne_one_of_char_ne_two
mul_neg
neg_neg
DFunLike.coe
MulChar
CommRing.toCommMonoid
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
Finset.card
Set.toFinset
setOf
Subtype.fintype
Set
Set.instMembership
Set.decidableSetOf
Set.toFinset_congr
isReduced_of_noZeroDivisors
Set.toFinset_card
MulChar.map_zero
Finset.ext
Set.toFinset_setOf
pow_two
List.toFinset_cons
Finset.instLawfulSingleton
sq_eq_sq_iff_eq_or_eq_neg
Nat.cast_one
Int.instCharZero
List.toFinset_nil
Finset.card_pair
Ring.eq_self_iff_eq_zero_of_char_ne_two
mul_self_eq_zero
neg_add_cancel
Finset.filter.congr_simp
sq_eq_one_iff
IsStrictOrderedRing.noZeroDivisors
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
AddGroupWithOne.toIntCast
Fintype.one_lt_card
two_pos
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Int.cast_zero
zero_pow
LT.lt.ne'
Int.cast_one
Int.cast_ite
Int.cast_neg
FiniteField.exists_nonsquare
Units.val
Mathlib.Tactic.Contrapose.contraposeβ
ne_of_eq_of_ne
MulChar.map_nonunit
zero_eq_neg
MulChar.IsQuadratic
Int.instCommRing
MulChar.one_apply
Units.isUnit
ZMod
ZMod.commRing
ZMod.Οβ
AddMonoidWithOne.toNatCast
CommRing.toRing
ZMod.Οβ_eq_neg_one_pow
FiniteField.odd_card_of_char_ne_two
Nat.even_or_odd
Even.neg_one_pow
Odd.neg_one_pow
Int.instMonoid
map_mul
MonoidHomClass.toMulHomClass
MulCharClass.toMonoidHomClass
MulChar.instMulCharClass
Finset.sum
Int.instAddCommMonoid
Finset.univ
MulChar.sum_eq_zero_of_ne_one
Int.instIsDomain
---
β Back to Index