Documentation Verification Report

QuadraticReciprocity

📁 Source: Mathlib/NumberTheory/LegendreSymbol/QuadraticReciprocity.lean

Statistics

MetricCount
Definitions0
Theoremsexists_sq_eq_neg_two_iff, exists_sq_eq_prime_iff_of_mod_four_eq_one, exists_sq_eq_prime_iff_of_mod_four_eq_three, exists_sq_eq_two_iff, at_neg_two, at_two, quadratic_reciprocity, quadratic_reciprocity', quadratic_reciprocity_one_mod_four, quadratic_reciprocity_three_mod_four
10
Total10

ZMod

Theorems

NameKindAssumesProvesValidatesDepends On
exists_sq_eq_neg_two_iff 📖mathematicalIsSquare
ZMod
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
instField
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Nat.instAtLeastTwoHAddOfNat
Nat.instAtLeastTwoHAddOfNat
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
FiniteField.isSquare_neg_two_iff
card
Nat.Prime.mod_two_eq_one_iff_ne_two
Fact.out
exists_sq_eq_prime_iff_of_mod_four_eq_one 📖mathematicalIsSquare
ZMod
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
eq_or_ne
legendreSym.eq_one_iff'
prime_ne_zero
legendreSym.quadratic_reciprocity_one_mod_four
exists_sq_eq_prime_iff_of_mod_four_eq_three 📖mathematicalIsSquare
ZMod
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
legendreSym.eq_one_iff'
prime_ne_zero
legendreSym.eq_neg_one_iff'
legendreSym.quadratic_reciprocity_three_mod_four
exists_sq_eq_two_iff 📖mathematicalIsSquare
ZMod
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
Nat.instAtLeastTwoHAddOfNat
Nat.instAtLeastTwoHAddOfNat
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
FiniteField.isSquare_two_iff
card
Nat.Prime.mod_two_eq_one_iff_ne_two
Fact.out

legendreSym

Theorems

NameKindAssumesProvesValidatesDepends On
at_neg_two 📖mathematicallegendreSym
DFunLike.coe
MulChar
ZMod
CommRing.toCommMonoid
ZMod.commRing
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
ZMod.χ₈'
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
eq_1
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
quadraticChar_neg_two
ZMod.ringChar_zmod_n
ZMod.card
at_two 📖mathematicallegendreSym
DFunLike.coe
MulChar
ZMod
CommRing.toCommMonoid
ZMod.commRing
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
MulChar.instFunLike
ZMod.χ₈
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
Int.cast_ofNat
eq_1
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
quadraticChar_two
ZMod.ringChar_zmod_n
ZMod.card
quadratic_reciprocity 📖mathematicallegendreSym
Monoid.toNatPow
Int.instMonoid
Nat.Prime.eq_two_or_odd
Fact.out
ZMod.ringChar_zmod_n
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
quadraticChar_odd_prime
Int.cast_natCast
Nat.cast_one
eq_1
ZMod.card
map_mul
MonoidHomClass.toMulHomClass
MulCharClass.toMonoidHomClass
MulChar.instMulCharClass
mul_rotate'
mul_comm
pow_two
quadraticChar_sq_one
ZMod.prime_ne_zero
mul_one
pow_mul
ZMod.χ₄_eq_neg_one_pow
map_pow
quadraticChar_neg_one
quadratic_reciprocity' 📖mathematicallegendreSym
Monoid.toNatPow
Int.instMonoid
eq_or_ne
eq_zero_iff
Nat.cast_zero
Int.cast_zero
Int.cast_natCast
ZMod.natCast_self
MulZeroClass.mul_zero
quadratic_reciprocity
ZMod.prime_ne_zero
mul_assoc
sq_one
mul_one
quadratic_reciprocity_one_mod_four 📖mathematicallegendreSymquadratic_reciprocity'
Nat.Prime.mod_two_eq_one_iff_ne_two
Fact.out
Nat.odd_of_mod_four_eq_one
pow_mul
ZMod.neg_one_pow_div_two_of_one_mod_four
one_pow
one_mul
quadratic_reciprocity_three_mod_four 📖mathematicallegendreSymZMod.neg_one_pow_div_two_of_three_mod_four
quadratic_reciprocity'
Nat.Prime.mod_two_eq_one_iff_ne_two
Fact.out
Nat.odd_of_mod_four_eq_three
pow_mul
neg_one_mul

---

← Back to Index