Documentation Verification Report

MahlerMeasure

πŸ“ Source: Mathlib/NumberTheory/MahlerMeasure.lean

Statistics

MetricCount
Definitions0
Theoremsabs_leadingCoeff_eq_one_of_mahlerMeasure_eq_one, card_eq_of_natDegree_le_of_coeff_le, card_mahlerMeasure_le_prod, cyclotomic_dvd_of_mahlerMeasure_eq_one, cyclotomic_mahlerMeasure_eq_one, finite_mahlerMeasure_le, isIntegral_of_mahlerMeasure_eq_one, isPrimitiveRoot_of_mahlerMeasure_eq_one, norm_leadingCoeff_eq_one_of_mahlerMeasure_eq_one, norm_root_le_one_of_mahlerMeasure_eq_one, one_le_mahlerMeasure_of_ne_zero, pow_eq_one_of_mahlerMeasure_eq_one
12
Total12

Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
abs_leadingCoeff_eq_one_of_mahlerMeasure_eq_one πŸ“–mathematicalmahlerMeasure
map
Complex
Int.instSemiring
Complex.instSemiring
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
Complex.commRing
Real
Real.instOne
abs
instLatticeInt
Int.instAddGroup
leadingCoeff
β€”norm_leadingCoeff_eq_one_of_mahlerMeasure_eq_one
Nat.cast_one
Complex.norm_intCast
Real.instIsStrictOrderedRing
Int.cast_one
RCLike.charZero_rclike
eq_intCast
RingHom.instRingHomClass
leadingCoeff_map_of_injective
RingHom.injective_int
Complex.instCharZero
card_eq_of_natDegree_le_of_coeff_le πŸ“–mathematicalβ€”Set.ncard
Polynomial
Int.instSemiring
setOf
natDegree
Finset.prod
Nat.instCommMonoid
Finset.univ
Fin.fintype
Int.floor
Real
Real.instRing
Real.linearOrder
Real.instFloorRing
Int.ceil
β€”Int.ceil_le
Int.le_floor
ofFn_natDegree_lt
Finset.mem_Icc
ofFn_coeff_eq_val_of_lt
Set.ncard_congr'
Finset.prod_congr
Nat.cast_one
Set.ncard_coe_finset
card_mahlerMeasure_le_prod πŸ“–mathematicalβ€”Set.ncard
Polynomial
Int.instSemiring
setOf
natDegree
Real
Real.instLE
mahlerMeasure
map
Complex
Complex.instSemiring
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
Complex.commRing
NNReal.toReal
Finset.prod
Nat.instCommMonoid
Finset.univ
Fin.fintype
Nat.floor
NNReal
instSemiringNNReal
instPartialOrderNNReal
NNReal.instFloorSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.choose
β€”β€”
cyclotomic_dvd_of_mahlerMeasure_eq_one πŸ“–mathematicalmahlerMeasure
map
Complex
Int.instSemiring
Complex.instSemiring
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
Complex.commRing
Real
Real.instOne
Polynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
Int.instCommRing
X
Ring.toSemiring
Int.instRing
cyclotomic
β€”degree_map_eq_of_injective
RingHom.injective_int
Complex.instCharZero
Splits.exists_eval_eq_zero
IsAlgClosed.splits
Complex.isAlgClosed
Mathlib.Tactic.Contrapose.contraposeβ‚„
coeff_zero_eq_aeval_zero
eval_zero_map
eq_intCast
RingHom.instRingHomClass
IsDomain.of_isSimpleRing
DivisionRing.isSimpleRing
mahlerMeasure_zero
NeZero.charZero_one
RCLike.charZero_rclike
isPrimitiveRoot_of_mahlerMeasure_eq_one
cyclotomic_eq_minpoly
minpoly.isIntegrallyClosed_dvd
Int.instIsDomain
IsDedekindRing.toIsIntegralClosure
IsDedekindDomain.toIsDedekindRing
IsPrincipalIdealRing.isDedekindDomain
EuclideanDomain.to_principal_ideal_domain
instIsTorsionFreeIntOfIsAddTorsionFree
Complex.instIsAddTorsionFree
isIntegral_of_mahlerMeasure_eq_one
mem_aroots
cyclotomic_mahlerMeasure_eq_one πŸ“–mathematicalβ€”mahlerMeasure
map
Complex
CommSemiring.toSemiring
CommRing.toCommSemiring
Complex.instSemiring
algebraMap
cyclotomic
CommRing.toRing
Real
Real.instOne
β€”eq_or_ne
cyclotomic_zero
map_one
mahlerMeasure_one
IsDomain.of_isSimpleRing
DivisionRing.isSimpleRing
Eq.le
IsPrimitiveRoot.norm'_eq_one
isPrimitiveRoot_of_mem_primitiveRoots
Multiset.prod_eq_one
instIsDomain
map_cyclotomic
mahlerMeasure_eq_leadingCoeff_mul_prod_roots
Monic.leadingCoeff
cyclotomic.monic
CStarRing.norm_of_mem_unitary
CStarAlgebra.toCStarRing
Complex.instNontrivial
SubmonoidClass.toOneMemClass
Submonoid.instSubmonoidClass
Multiset.map_congr
cyclotomic.roots_eq_primitiveRoots_val
NeZero.charZero
Complex.instCharZero
one_mul
finite_mahlerMeasure_le πŸ“–mathematicalβ€”Set.Finite
Polynomial
Int.instSemiring
setOf
natDegree
Real
Real.instLE
mahlerMeasure
map
Complex
Complex.instSemiring
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
Complex.commRing
NNReal.toReal
β€”β€”
isIntegral_of_mahlerMeasure_eq_one πŸ“–mathematicalmahlerMeasure
map
Complex
Int.instSemiring
Complex.instSemiring
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
Complex.commRing
Real
Real.instOne
Multiset
Multiset.instMembership
aroots
Int.instCommRing
IsDomain.of_isSimpleRing
DivisionRing.isSimpleRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
Complex.instNormedField
Ring.toIntAlgebra
Complex.instRing
IsIntegralβ€”IsDomain.of_isSimpleRing
DivisionRing.isSimpleRing
abs_eq_abs
abs_leadingCoeff_eq_one_of_mahlerMeasure_eq_one
eq_intCast
RingHom.instRingHomClass
leadingCoeff_mul
NormMulClass.toNoZeroDivisors
Int.instNormMulClass
EuclideanDomain.div_self
Int.cast_one
Monic.leadingCoeff
mul_one
Int.cast_neg
leadingCoeff_neg
mul_neg
neg_neg
isPrimitiveRoot_of_mahlerMeasure_eq_one πŸ“–mathematicalmahlerMeasure
map
Complex
Int.instSemiring
Complex.instSemiring
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
Complex.commRing
Real
Real.instOne
Multiset
Multiset.instMembership
aroots
Int.instCommRing
IsDomain.of_isSimpleRing
DivisionRing.isSimpleRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
Complex.instNormedField
Ring.toIntAlgebra
Complex.instRing
IsPrimitiveRoot
CommRing.toCommMonoid
β€”IsDomain.of_isSimpleRing
DivisionRing.isSimpleRing
pow_eq_one_of_mahlerMeasure_eq_one
IsPrimitiveRoot.exists_pos
norm_leadingCoeff_eq_one_of_mahlerMeasure_eq_one πŸ“–mathematicalmahlerMeasure
map
Complex
Int.instSemiring
Complex.instSemiring
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
Complex.commRing
Real
Real.instOne
Norm.norm
Complex.instNorm
leadingCoeff
β€”eq_or_ne
map_zero
mahlerMeasure_zero
NeZero.charZero_one
RCLike.charZero_rclike
leading_coeff_le_mahlerMeasure
leadingCoeff_map_of_injective
RingHom.injective_int
Complex.instCharZero
eq_intCast
RingHom.instRingHomClass
Nat.cast_one
Complex.norm_intCast
Real.instIsStrictOrderedRing
Int.cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
norm_root_le_one_of_mahlerMeasure_eq_one πŸ“–mathematicalmahlerMeasure
map
Complex
Int.instSemiring
Complex.instSemiring
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
Complex.commRing
Real
Real.instOne
Multiset
Multiset.instMembership
aroots
Int.instCommRing
IsDomain.of_isSimpleRing
DivisionRing.isSimpleRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
Complex.instNormedField
Ring.toIntAlgebra
Complex.instRing
Real.instLE
Norm.norm
Complex.instNorm
β€”IsDomain.of_isSimpleRing
DivisionRing.isSimpleRing
le_max_right
Multiset.mem_le_prod_of_one_le
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
Real.instZeroLEOneClass
le_max_left
one_le_mahlerMeasure_of_ne_zero πŸ“–mathematicalβ€”Real
Real.instLE
Real.instOne
mahlerMeasure
map
Complex
Int.instSemiring
Complex.instSemiring
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
Complex.commRing
β€”le_trans
leadingCoeff_map_of_injective
RingHom.injective_int
Complex.instCharZero
eq_intCast
RingHom.instRingHomClass
Nat.cast_one
Complex.norm_intCast
Real.instIsStrictOrderedRing
Int.cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Int.one_le_abs
leadingCoeff_ne_zero
leading_coeff_le_mahlerMeasure
pow_eq_one_of_mahlerMeasure_eq_one πŸ“–mathematicalmahlerMeasure
map
Complex
Int.instSemiring
Complex.instSemiring
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
Complex.commRing
Real
Real.instOne
Multiset
Multiset.instMembership
aroots
Int.instCommRing
IsDomain.of_isSimpleRing
DivisionRing.isSimpleRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
Complex.instNormedField
Ring.toIntAlgebra
Complex.instRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instOne
β€”IsDomain.of_isSimpleRing
DivisionRing.isSimpleRing
Complex.instCharZero
IntermediateField.charZero
Rat.instCharZero
IntermediateField.adjoin.finiteDimensional
IsIntegral.tower_top
AddCommGroup.intIsScalarTower
isIntegral_of_mahlerMeasure_eq_one
IntermediateField.mem_adjoin_simple_self
SubsemiringClass.toSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
NumberField.Embeddings.pow_eq_one_of_norm_le_one
Complex.isAlgClosed
Subtype.coe_ne_coe
IntermediateField.coe_isIntegral_iff
norm_root_le_one_of_mahlerMeasure_eq_one
mem_aroots
Int.instIsDomain
instIsTorsionFreeIntOfIsAddTorsionFree
Complex.instIsAddTorsionFree
map_id
map_aeval_eq_aeval_map
RingHom.ext
RingHomCompTriple.comp_eq
RingHomCompTriple.ids
eq_intCast
RingHom.instRingHomClass
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
map_eq_zero_iff
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.injective
Complex.instNontrivial
FaithfulSMul.algebraMap_injective
IntermediateField.instFaithfulSMulSubtypeMem
Module.Free.instFaithfulSMulOfNontrivial
Module.free_of_finite_type_torsion_free'
IsPrincipalIdealRing.of_isSimpleRing
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
FiniteDimensional.finiteDimensional_self
Module.Projective.of_free
Module.Free.self
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors

---

← Back to Index