π Source: Mathlib/NumberTheory/MahlerMeasure.lean
abs_leadingCoeff_eq_one_of_mahlerMeasure_eq_one
card_eq_of_natDegree_le_of_coeff_le
card_mahlerMeasure_le_prod
cyclotomic_dvd_of_mahlerMeasure_eq_one
cyclotomic_mahlerMeasure_eq_one
finite_mahlerMeasure_le
isIntegral_of_mahlerMeasure_eq_one
isPrimitiveRoot_of_mahlerMeasure_eq_one
norm_leadingCoeff_eq_one_of_mahlerMeasure_eq_one
norm_root_le_one_of_mahlerMeasure_eq_one
one_le_mahlerMeasure_of_ne_zero
pow_eq_one_of_mahlerMeasure_eq_one
mahlerMeasure
map
Complex
Int.instSemiring
Complex.instSemiring
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
Complex.commRing
Real
Real.instOne
abs
instLatticeInt
Int.instAddGroup
leadingCoeff
Nat.cast_one
Complex.norm_intCast
Real.instIsStrictOrderedRing
Int.cast_one
RCLike.charZero_rclike
eq_intCast
RingHom.instRingHomClass
leadingCoeff_map_of_injective
RingHom.injective_int
Complex.instCharZero
Set.ncard
Polynomial
setOf
natDegree
Finset.prod
Nat.instCommMonoid
Finset.univ
Fin.fintype
Int.floor
Real.instRing
Real.linearOrder
Real.instFloorRing
Int.ceil
Int.ceil_le
Int.le_floor
ofFn_natDegree_lt
Finset.mem_Icc
ofFn_coeff_eq_val_of_lt
Set.ncard_congr'
Finset.prod_congr
Set.ncard_coe_finset
Real.instLE
NNReal.toReal
Nat.floor
NNReal
instSemiringNNReal
instPartialOrderNNReal
NNReal.instFloorSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.choose
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
Int.instCommRing
X
Ring.toSemiring
Int.instRing
cyclotomic
degree_map_eq_of_injective
Splits.exists_eval_eq_zero
IsAlgClosed.splits
Complex.isAlgClosed
Mathlib.Tactic.Contrapose.contraposeβ
coeff_zero_eq_aeval_zero
eval_zero_map
IsDomain.of_isSimpleRing
DivisionRing.isSimpleRing
mahlerMeasure_zero
NeZero.charZero_one
cyclotomic_eq_minpoly
minpoly.isIntegrallyClosed_dvd
Int.instIsDomain
IsDedekindRing.toIsIntegralClosure
IsDedekindDomain.toIsDedekindRing
IsPrincipalIdealRing.isDedekindDomain
EuclideanDomain.to_principal_ideal_domain
instIsTorsionFreeIntOfIsAddTorsionFree
Complex.instIsAddTorsionFree
mem_aroots
CommSemiring.toSemiring
CommRing.toCommSemiring
algebraMap
CommRing.toRing
eq_or_ne
cyclotomic_zero
map_one
mahlerMeasure_one
Eq.le
IsPrimitiveRoot.norm'_eq_one
isPrimitiveRoot_of_mem_primitiveRoots
Multiset.prod_eq_one
instIsDomain
map_cyclotomic
mahlerMeasure_eq_leadingCoeff_mul_prod_roots
Monic.leadingCoeff
cyclotomic.monic
CStarRing.norm_of_mem_unitary
CStarAlgebra.toCStarRing
Complex.instNontrivial
SubmonoidClass.toOneMemClass
Submonoid.instSubmonoidClass
Multiset.map_congr
cyclotomic.roots_eq_primitiveRoots_val
NeZero.charZero
one_mul
Set.Finite
Multiset
Multiset.instMembership
aroots
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
Complex.instNormedField
Ring.toIntAlgebra
Complex.instRing
IsIntegral
abs_eq_abs
leadingCoeff_mul
NormMulClass.toNoZeroDivisors
Int.instNormMulClass
EuclideanDomain.div_self
mul_one
Int.cast_neg
leadingCoeff_neg
mul_neg
neg_neg
IsPrimitiveRoot
CommRing.toCommMonoid
IsPrimitiveRoot.exists_pos
Norm.norm
Complex.instNorm
map_zero
leading_coeff_le_mahlerMeasure
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
le_max_right
Multiset.mem_le_prod_of_one_le
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
le_max_left
le_trans
Int.one_le_abs
leadingCoeff_ne_zero
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instOne
IntermediateField.charZero
Rat.instCharZero
IntermediateField.adjoin.finiteDimensional
IsIntegral.tower_top
AddCommGroup.intIsScalarTower
IntermediateField.mem_adjoin_simple_self
SubsemiringClass.toSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
NumberField.Embeddings.pow_eq_one_of_norm_le_one
Subtype.coe_ne_coe
IntermediateField.coe_isIntegral_iff
map_id
map_aeval_eq_aeval_map
RingHom.ext
RingHomCompTriple.comp_eq
RingHomCompTriple.ids
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
map_eq_zero_iff
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.injective
FaithfulSMul.algebraMap_injective
IntermediateField.instFaithfulSMulSubtypeMem
Module.Free.instFaithfulSMulOfNontrivial
Module.free_of_finite_type_torsion_free'
IsPrincipalIdealRing.of_isSimpleRing
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
FiniteDimensional.finiteDimensional_self
Module.Projective.of_free
Module.Free.self
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
---
β Back to Index