đ Source: Mathlib/NumberTheory/ModularForms/Bounds.lean
exists_bound
petersson_bounded_left
petersson_bounded_right
qExpansion_isBigO
exists_petersson_le
exists_bound_fundamental_domain_of_isBigO
exists_bound_of_invariant
exists_bound_of_invariant_of_isBigO
exists_bound_of_subgroup_invariant
exists_bound_of_subgroup_invariant_of_isArithmetic_of_isBigO
exists_bound_of_subgroup_invariant_of_isBigO
qExpansion_coeff_isBigO_of_norm_isBigO
Real
Real.instLE
Norm.norm
Complex
Complex.instNorm
DFunLike.coe
UpperHalfPlane
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instPow
UpperHalfPlane.im
Real.instIntCast
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
CuspForm.instModularFormClassOfCuspFormClass
sq_le_sqâ
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
norm_nonneg
Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Real.sqrt_nonneg
Real.rpow_pos_of_pos
UpperHalfPlane.im_pos
div_pow
Real.sq_sqrt
LE.le.trans
le_imp_le_of_le_of_le
le_refl
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
le_of_lt
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
UpperHalfPlane.petersson.eq_1
Real.rpow_mul_natCast
LT.lt.le
Complex.norm_mul
RCLike.norm_conj
norm_zpow
Complex.norm_real
abs_of_pos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsUnit.div_mul_cancel
RCLike.charZero_rclike
Real.rpow_intCast
Mathlib.Tactic.FieldSimp.le_eq_cancel_le
PosMulStrictMono.toPosMulMono
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalâ
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalâ
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_evalâ
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
ne_of_gt
zpow_pos
zero_lt_one
Real.instZeroLEOneClass
NeZero.one
GroupWithZero.toNontrivial
UpperHalfPlane.petersson
norm_norm
ModularGroup.exists_bound_of_subgroup_invariant
Continuous.norm
UpperHalfPlane.petersson_continuous
ModularFormClass.continuous
UpperHalfPlane.IsZeroAtImInfty.isBoundedAtImInfty
UpperHalfPlane.IsZeroAtImInfty.eq_1
Filter.ZeroAtFilter.eq_1
tendsto_zero_iff_norm_tendsto_zero
map_inv
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
IsStrictOrderedRing.toCharZero
MonoidHom.instMonoidHomClass
Matrix.SpecialLinearGroup.map_mapGL
AddCommGroup.intIsScalarTower
Subgroup.IsArithmetic.conj
UpperHalfPlane.IsZeroAtImInfty.petersson_isZeroAtImInfty_left
instFactIsCuspInftyRealOfIsArithmetic
Subgroup.instHasDetPlusMinusOneFinOfNatNatRealOfIsArithmetic
Subgroup.IsArithmetic.discreteTopology
cuspForm
ModularFormClass.modularForm
zero_at_infty
SlashInvariantFormClass.norm_petersson_smul
toSlashInvariantFormClass
ModularFormClass.toSlashInvariantFormClass
UpperHalfPlane.petersson_norm_symm
Asymptotics.IsBigO
Real.norm
Filter.atTop
Nat.instPreorder
LinearMap
Complex.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
PowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
PowerSeries.coeff
ModularFormClass.qExpansion
Subgroup.strictWidthInfty
Asymptotics.isBigO_of_le'
of_eq
instReflLe
Real.norm_of_nonneg
Real.rpow_neg
div_eq_mul_inv
Real.instMul
Real.instMax
Real.instOne
DivInvMonoid.toZPow
CanLift.prf
instCanLiftIntNatCastLeOfNat
le_trans
lt_max_of_lt_left
div_le_iffâ
Nat.cast_zero
zpow_natCast
norm_pos_iff
pow_ne_zero
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
UpperHalfPlane.im_ne_zero
mul_nonneg
IsOrderedRing.toPosMulMono
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
mul_pow
mul_div_assoc
le_div_iffâ
sq
Complex.norm_conj
norm_mul
Eq.le
NNReal.canLift
coe_nnnorm
Complex.nnnorm_real
Monotone.map_max
pow_left_mono
NNReal.mulLeftMono
covariant_swap_mul_of_covariant_mul
max_div_div_right
NNReal.instIsStrictOrderedRing
zero_le
NNReal.instCanonicallyOrderedAdd
nnnorm_pow
NormedDivisionRing.to_normOneClass
NNReal.nnnorm_eq
div_self
NNReal.instNoZeroDivisors
LT.lt.ne'
one_pow
one_div
inv_pow
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
ModularGroup.exists_bound_of_subgroup_invariant_of_isArithmetic_of_isBigO
continuous
Int.cast_zero
NeZero.charZero_one
Asymptotics.IsBigO.mul
Asymptotics.IsBigO.norm_left
bdd_at_infty_slash
Asymptotics.isBigO_refl
qExpansion
Asymptotics.IsBigO_def
Asymptotics.IsBigOWith_def
Filter.mp_mem
eventually_le_nhds
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Filter.univ_mem'
le_of_eq
max_eq_right
one_le_one_div
zpow_le_oneâ
zpow_neg
inv_pos_of_pos
Continuous
UpperHalfPlane.instTopologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toNorm
UpperHalfPlane.atImInfty
Asymptotics.IsBigO.exists_pos
Filter.eventually_atTop
instIsDirectedOrder
Real.instArchimedean
Filter.eventually_comap
UpperHalfPlane.atImInfty.eq_1
Continuous.continuousOn
Continuous.div
IsTopologicalDivisionRing.toContinuousInvâ
instIsTopologicalDivisionRingReal
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Continuous.rpow_const
UpperHalfPlane.continuous_im
norm_div
abs_norm
Real.norm_rpow_of_nonneg
IsCompact.exists_bound_of_continuousOn
isCompact_truncatedFundamentalDomain
le_total
mul_le_mul_of_nonneg_right
le_max_left
le_max_right
UpperHalfPlane.IsBoundedAtImInfty
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
SemigroupAction.toSMul
Monoid.toSemigroup
Matrix.SpecialLinearGroup.monoid
MulAction.toSemigroupAction
UpperHalfPlane.SLAction
Ring.toIntAlgebra
Real.instRing
Real.rpow_zero
le_rfl
Real.instZero
exists_smul_mem_fd
mul_le_mul_of_nonneg_left
Real.rpow_le_rpow
im_smul_eq_div_normSq
denom_apply
zero_ne_one
Matrix.det_fin_two
MulZeroClass.mul_zero
sub_zero
Matrix.SpecialLinearGroup.det_coe
Int.cast_one
one_le_sq_iff_one_le_abs
Int.instIsStrictOrderedRing
Int.one_le_abs
MulZeroClass.zero_mul
zero_add
Complex.normSq_intCast
Mathlib.Tactic.FieldSimp.NF.div_eq_evalâ
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
Mathlib.Tactic.FieldSimp.NF.cons_pos
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
inv_le_one_of_one_leâ
div_le_divâ
add_zero
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.sub_nonpos_of_le
sq_nonneg
AddGroup.existsAddOfLE
Mathlib.Tactic.Linarith.sub_neg_of_lt
mul_nonneg_of_nonpos_of_nonpos
covariant_swap_add_of_covariant_add
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Matrix.GeneralLinearGroup
Real.semiring
Units.instMonoid
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
UpperHalfPlane.glAction
Subgroup.IsArithmetic.finiteIndex_comap
QuotientGroup.leftRel_apply
Quotient.eq
Quotient.eq_iff_equiv
mul_inv_cancel_left
mul_inv_rev
SemigroupAction.mul_smul
InvMemClass.inv_mem
SubgroupClass.toInvMemClass
Subgroup.instSubgroupClass
QuotientGroup.induction_on
Continuous.comp'
Continuous.const_smul
UpperHalfPlane.instContinuousGLSMul
continuous_id'
MulAction.left_quotientAction
inv_smul_smul
Quot.induction_on
continuous_finset_sum
IsTopologicalSemiring.toContinuousAdd
Asymptotics.IsBigO.sum
Fintype.sum_equiv
Finset.sum_congr
Finset.sum_nonneg
inv_one
one_smul
Finset.single_le_sum
Finset.mem_univ
Filter.comap
nhds
Real.pseudoMetricSpace
Real.instNeg
Subgroup.strictWidthInfty_pos_iff
Subgroup.instDiscreteTopStrictPeriods
Fact.out
Subgroup.strictWidthInfty_mem_strictPeriods
Asymptotics.isBigO_iff
Filter.Tendsto.eventually
Filter.Tendsto.comp
tendsto_inv_atTop_zero
instOrderTopologyReal
tendsto_natCast_atTop_atTop
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
div_pos
Nat.cast_pos'
ModularFormClass.qExpansion_coeff_eq_intervalIntegral
intervalIntegral.integral_const_mul
Complex.ofReal_div
intervalIntegral.norm_integral_le_integral_norm
Complex.inv_re
Complex.normSq_natCast
div_self_mul_self'
Complex.inv_im
neg_zero
zero_div
NormOneClass.norm_one
norm_pow
mul_assoc
Function.Periodic.norm_qParam
Real.exp_nat_mul
mul_le_mul
Real.exp_pos
Real.exp_monotone
neg_mul
neg_div
mul_neg
Mathlib.Tactic.FieldSimp.NF.div_eq_evalâ
Real.pi_pos
Mathlib.Meta.NormNum.instAtLeastTwo
Real.rpow_neg_eq_inv_rpow
inv_inv
intervalIntegral.integral_mono
Continuous.intervalIntegrable
Real.locallyFinite_volume
continuous_mul
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Continuous.prodMk
continuous_const
Continuous.divâ
Continuous.pow
Function.Periodic.continuous_qParam
Continuous.fun_add
Complex.continuous_ofReal
Complex.instNontrivial
Continuous.upperHalfPlaneMk
intervalIntegral.integral_const
Real.instCompleteSpace
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalâ
---
â Back to Index