Documentation Verification Report

DedekindEta

πŸ“ Source: Mathlib/NumberTheory/ModularForms/DedekindEta.lean

Statistics

MetricCount
Definitionseta, eta_q
2
TheoremsdifferentiableAt_eta_of_mem_upperHalfPlaneSet, differentiableAt_eta_tprod, eta_ne_zero, eta_q_eq_cexp, eta_q_eq_pow, eta_tprod_ne_zero, logDeriv_eta_eq_E2, logDeriv_one_sub_cexp, logDeriv_one_sub_mul_cexp_comp, logDeriv_qParam, multipliableLocallyUniformlyOn_eta, one_sub_eta_q_ne_zero, summable_eta_q, summable_logDeriv_one_sub_eta_q, tsum_logDeriv_eta_q
15
Total17

ModularForm

Definitions

NameCategoryTheorems
eta πŸ“–CompOp
2 mathmath: logDeriv_eta_eq_E2, differentiableAt_eta_of_mem_upperHalfPlaneSet
eta_q πŸ“–CompOp
7 mathmath: eta_q_eq_pow, tsum_logDeriv_eta_q, eta_q_eq_cexp, differentiableAt_eta_tprod, summable_logDeriv_one_sub_eta_q, summable_eta_q, multipliableLocallyUniformlyOn_eta

Theorems

NameKindAssumesProvesValidatesDepends On
differentiableAt_eta_of_mem_upperHalfPlaneSet πŸ“–mathematicalComplex
Set
Set.instMembership
UpperHalfPlane.upperHalfPlaneSet
DifferentiableAt
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.addCommGroup
Complex.instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
CommCStarAlgebra.toNormedCommRing
instCommCStarAlgebraComplex
eta
β€”DifferentiableAt.mul
Differentiable.differentiableAt
Function.Periodic.differentiable_qParam
differentiableAt_eta_tprod
differentiableAt_eta_tprod πŸ“–mathematicalComplex
Set
Set.instMembership
UpperHalfPlane.upperHalfPlaneSet
DifferentiableAt
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.addCommGroup
Complex.instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
CommCStarAlgebra.toNormedCommRing
instCommCStarAlgebraComplex
tprod
CommRing.toCommMonoid
Complex.commRing
Complex.instSub
Complex.instOne
eta_q
SummationFilter.unconditional
β€”DifferentiableWithinAt.differentiableAt
TendstoLocallyUniformlyOn.differentiableOn
Complex.instCompleteSpace
Filter.atTop_neBot
Finset.isDirected_le
MultipliableLocallyUniformlyOn.hasProdLocallyUniformlyOn
multipliableLocallyUniformlyOn_eta
Filter.univ_mem'
Finset.prod_fn
DifferentiableOn.finset_prod
DifferentiableOn.const_sub
DifferentiableOn.fun_pow
Differentiable.differentiableOn
Function.Periodic.differentiable_qParam
UpperHalfPlane.isOpen_upperHalfPlaneSet
IsOpen.mem_nhds
eta_ne_zero πŸ“–β€”Complex
Set
Set.instMembership
UpperHalfPlane.upperHalfPlaneSet
β€”β€”mul_ne_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Function.Periodic.qParam_ne_zero
eta_tprod_ne_zero
eta_q_eq_cexp πŸ“–mathematicalβ€”eta_q
Complex.exp
Complex
Complex.instMul
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal
Real.pi
Complex.I
Complex.instAdd
Complex.instOne
β€”Nat.instAtLeastTwoHAddOfNat
div_one
nsmul_eq_mul
Nat.cast_add
Nat.cast_one
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.mul_assoc_rev
add_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
eta_q_eq_pow πŸ“–mathematicalβ€”eta_q
Complex
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.exp
Complex.instMul
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal
Real.pi
Complex.I
β€”Nat.instAtLeastTwoHAddOfNat
div_one
eta_tprod_ne_zero πŸ“–β€”Complex
Set
Set.instMembership
UpperHalfPlane.upperHalfPlaneSet
β€”β€”tprod_one_add_ne_zero_of_summable
NormedDivisionRing.to_normOneClass
Complex.instCompleteSpace
NormedDivisionRing.toNormMulClass
one_sub_eta_q_ne_zero
norm_neg
norm_pow
FiniteDimensional.rclike_to_real
norm_norm
summable_eta_q
logDeriv_eta_eq_E2 πŸ“–mathematicalβ€”logDeriv
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
CStarAlgebra.toNormedAlgebra
CommCStarAlgebra.toCStarAlgebra
instCommCStarAlgebraComplex
eta
UpperHalfPlane.coe
Complex.instMul
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.ofReal
Real.pi
Complex.I
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
EisensteinSeries.E2
β€”Nat.instAtLeastTwoHAddOfNat
logDeriv_mul
Function.Periodic.qParam_ne_zero
eta_tprod_ne_zero
UpperHalfPlane.coe_im_pos
Differentiable.differentiableAt
Function.Periodic.differentiable_qParam
differentiableAt_eta_tprod
logDeriv_tprod_eq_tsum
UpperHalfPlane.isOpen_upperHalfPlaneSet
one_sub_eta_q_ne_zero
DifferentiableOn.const_sub
DifferentiableOn.fun_pow
Differentiable.differentiableOn
summable_logDeriv_one_sub_eta_q
multipliableLocallyUniformlyOn_eta
logDeriv_qParam
tsum_logDeriv_eta_q
one_div
mul_inv_rev
EisensteinSeries.G2_eq_tsum_cexp
riemannZeta_two
tsum_pow_div_one_sub_eq_tsum_sigma
Complex.instCompleteSpace
RCLike.instNormSMulClassInt
UpperHalfPlane.norm_exp_two_pi_I_lt_one
mul_sub
sub_eq_add_neg
mul_add
Distrib.leftDistribClass
eta_q_eq_pow
mul_neg
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Complex.instT2Space
inv_div
pow_one
tsum_pnat_eq_tsum_succ
Nat.cast_add
Nat.cast_one
SeminormedAddCommGroup.toIsTopologicalAddGroup
logDeriv_one_sub_cexp πŸ“–mathematicalβ€”logDeriv
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
CStarAlgebra.toNormedAlgebra
CommCStarAlgebra.toCStarAlgebra
instCommCStarAlgebraComplex
Complex.instSub
Complex.instOne
Complex.instMul
Complex.exp
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instNeg
β€”deriv_fun_sub
deriv_const'
deriv_fun_mul
MulZeroClass.zero_mul
Complex.deriv_exp
zero_add
zero_sub
neg_mul
logDeriv_one_sub_mul_cexp_comp πŸ“–mathematicalDifferentiable
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.addCommGroup
Complex.instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
CommCStarAlgebra.toNormedCommRing
instCommCStarAlgebraComplex
logDeriv
CStarAlgebra.toNormedAlgebra
CommCStarAlgebra.toCStarAlgebra
Complex.instSub
Complex.instOne
Complex.instMul
Complex.exp
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instNeg
deriv
β€”logDeriv_comp
DifferentiableAt.const_sub
DifferentiableAt.const_mul
DifferentiableAt.cexp
differentiableAt_id
logDeriv_one_sub_cexp
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.atom_pf'
logDeriv_qParam πŸ“–mathematicalβ€”logDeriv
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
CStarAlgebra.toNormedAlgebra
CommCStarAlgebra.toCStarAlgebra
instCommCStarAlgebraComplex
Function.Periodic.qParam
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instMul
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal
Real.pi
Complex.I
β€”Nat.instAtLeastTwoHAddOfNat
logDeriv_comp
DifferentiableAt.cexp
differentiableAt_id
DifferentiableAt.const_mul
deriv_const_mul
Complex.logDeriv_exp
deriv_id''
mul_one
one_mul
multipliableLocallyUniformlyOn_eta πŸ“–mathematicalβ€”MultipliableLocallyUniformlyOn
Complex
CommRing.toCommMonoid
Complex.commRing
Complex.instSub
Complex.instOne
eta_q
UpperHalfPlane.upperHalfPlaneSet
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
CommCStarAlgebra.toNormedCommRing
instCommCStarAlgebraComplex
UniformSpace.toTopologicalSpace
β€”sub_eq_add_neg
hasProdLocallyUniformlyOn_of_forall_compact
UpperHalfPlane.isOpen_upperHalfPlaneSet
locallyCompact_of_proper
Complex.instProperSpace
Nat.instAtLeastTwoHAddOfNat
ContinuousOn.norm
ContinuousOn.cexp
ContinuousOn.fun_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
continuousOn_const
continuousOn_id'
IsCompact.exists_sSup_image_eq_and_ge
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Summable.hasProdUniformlyOn_nat_one_add
NormedDivisionRing.to_normOneClass
Complex.instCompleteSpace
summable_eta_q
Filter.univ_mem'
eta_q_eq_pow
norm_neg
norm_pow
NormedDivisionRing.toNormMulClass
pow_le_pow_leftβ‚€
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
ContinuousOn.neg
IsTopologicalRing.toContinuousNeg
Continuous.comp_continuousOn'
Continuous.pow
continuous_id'
Continuous.div_const
hasProdUniformlyOn_iff_tendstoUniformlyOn
Set.not_nonempty_iff_eq_empty
tendstoUniformlyOn_empty
one_sub_eta_q_ne_zero πŸ“–β€”Complex
Set
Set.instMembership
UpperHalfPlane.upperHalfPlaneSet
β€”β€”Nat.instAtLeastTwoHAddOfNat
eta_q_eq_cexp
sub_ne_zero
nsmul_eq_mul
Nat.cast_add
Nat.cast_one
add_zero
MulZeroClass.zero_mul
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Nat.cast_nonneg'
Real.instZeroLEOneClass
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
CStarRing.norm_of_mem_unitary
CStarAlgebra.toCStarRing
Complex.instNontrivial
SubmonoidClass.toOneMemClass
Submonoid.instSubmonoidClass
UpperHalfPlane.norm_exp_two_pi_I_lt_one
summable_eta_q πŸ“–mathematicalβ€”Summable
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Norm.norm
Complex
Complex.instNorm
Complex.instNeg
eta_q
UpperHalfPlane.coe
SummationFilter.unconditional
β€”Nat.instAtLeastTwoHAddOfNat
eta_q_eq_pow
norm_neg
norm_pow
NormedDivisionRing.to_normOneClass
NormedDivisionRing.toNormMulClass
summable_nat_add_iff
instIsTopologicalAddGroupReal
norm_norm
UpperHalfPlane.norm_exp_two_pi_I_lt_one
summable_logDeriv_one_sub_eta_q πŸ“–mathematicalComplex
Set
Set.instMembership
UpperHalfPlane.upperHalfPlaneSet
Summable
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
CommCStarAlgebra.toNormedCommRing
instCommCStarAlgebraComplex
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
logDeriv
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
CStarAlgebra.toNormedAlgebra
CommCStarAlgebra.toCStarAlgebra
Complex.instSub
Complex.instOne
eta_q
SummationFilter.unconditional
β€”summable_norm_pow_mul_geometric_div_one_sub
Complex.instCompleteSpace
UpperHalfPlane.norm_qParam_lt_one
Nat.instAtLeastTwoHAddOfNat
Summable.mul_left
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
summable_nat_add_iff
SeminormedAddCommGroup.toIsTopologicalAddGroup
tsum_logDeriv_eta_q πŸ“–mathematicalβ€”tsum
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
CommCStarAlgebra.toNormedCommRing
instCommCStarAlgebraComplex
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
logDeriv
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
CStarAlgebra.toNormedAlgebra
CommCStarAlgebra.toCStarAlgebra
Complex.instSub
Complex.instOne
eta_q
SummationFilter.unconditional
Complex.instMul
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal
Real.pi
Complex.I
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instAdd
Complex.instNeg
β€”Nat.instAtLeastTwoHAddOfNat
tsum_congr
tsum_mul_left
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Complex.instT2Space

---

← Back to Index