Documentation Verification Report

Defs

πŸ“ Source: Mathlib/NumberTheory/ModularForms/EisensteinSeries/E2/Defs.lean

Statistics

MetricCount
DefinitionsD2, E2, e2Summand
3
TheoremsD2_S, D2_T, D2_inv, D2_mul, D2_one, e2Summand_even, e2Summand_summable, e2Summand_zero_eq_two_riemannZeta_two
8
Total11

EisensteinSeries

Definitions

NameCategoryTheorems
D2 πŸ“–CompOp
7 mathmath: E2_slash_action, G2_slash_action, D2_S, D2_inv, D2_one, D2_T, D2_mul
E2 πŸ“–CompOp
2 mathmath: E2_slash_action, ModularForm.logDeriv_eta_eq_E2
e2Summand πŸ“–CompOp
8 mathmath: hasSum_e2Summand_symmetricIcc, e2Summand_even, G2_eq_tsum_symmetricIco, tendsto_e2Summand_atTop_nhds_zero, hasSum_e2Summand_symmetricIco, e2Summand_zero_eq_two_riemannZeta_two, summable_e2Summand_symmetricIcc, summable_e2Summand_symmetricIco

Theorems

NameKindAssumesProvesValidatesDepends On
D2_S πŸ“–mathematicalβ€”D2
ModularGroup.S
Complex
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instMul
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal
Real.pi
Complex.I
UpperHalfPlane.coe
β€”Nat.instAtLeastTwoHAddOfNat
Matrix.cons_val'
Matrix.cons_val_fin_one
Int.cast_one
mul_one
one_mul
Int.cast_zero
add_zero
D2_T πŸ“–mathematicalβ€”D2
ModularGroup.T
Pi.instZero
UpperHalfPlane
Complex
Complex.instZero
β€”Matrix.cons_val'
Matrix.cons_val_fin_one
Int.cast_zero
MulZeroClass.mul_zero
zero_div
D2_inv πŸ“–mathematicalβ€”SlashAction.map
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
Matrix.SpecialLinearGroup.monoid
Pi.addMonoid
UpperHalfPlane
Complex
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Complex.instNormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ModularForm.SLAction
Matrix.SpecialLinearGroup.hasInv
D2
Pi.instNeg
Complex.instNeg
β€”mul_inv_cancel
D2_one
D2_mul
D2_mul πŸ“–mathematicalβ€”D2
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
Matrix.SpecialLinearGroup.hasMul
Pi.instAdd
UpperHalfPlane
Complex
Complex.instAdd
SlashAction.map
Matrix.SpecialLinearGroup.monoid
Pi.addMonoid
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Complex.instNormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ModularForm.SLAction
β€”mul_assoc
map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
ModularForm.SL_slash_def
zpow_neg
Distrib.leftDistribClass
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
Complex.instCharZero
Matrix.SpecialLinearGroup.det_coe
Int.cast_one
mul_one
UpperHalfPlane.im_pos
UpperHalfPlane.coe_specialLinearGroup_apply
eq_intCast
RingHom.instRingHomClass
UpperHalfPlane.specialLinearGroup_apply
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
UpperHalfPlane.denom_ne_zero
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.zpow_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
pow_two
UpperHalfPlane.denom_cocycle
UpperHalfPlane.im_ne_zero
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.div_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
D2_one πŸ“–mathematicalβ€”D2
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
Matrix.SpecialLinearGroup.hasOne
Pi.instZero
UpperHalfPlane
Complex
Complex.instZero
β€”Matrix.one_apply_ne
Fin.instNeZeroHAddNatOfNat_mathlib_1
Int.cast_zero
MulZeroClass.mul_zero
map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
zero_div
e2Summand_even πŸ“–mathematicalβ€”Function.Even
Complex
e2Summand
β€”tsum_comp_neg
tsum_congr
Int.cast_neg
neg_mul
Matrix.cons_val_fin_one
zpow_neg
zpow_natCast
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_one
e2Summand_summable πŸ“–mathematicalβ€”Summable
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
CommCStarAlgebra.toNormedCommRing
instCommCStarAlgebraComplex
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
eisSummand
Matrix.vecCons
Matrix.vecEmpty
SummationFilter.unconditional
β€”Summable.congr
linear_right_summable
Matrix.cons_val_fin_one
zpow_neg
e2Summand_zero_eq_two_riemannZeta_two πŸ“–mathematicalβ€”e2Summand
Complex
Complex.instMul
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
riemannZeta
β€”Nat.instAtLeastTwoHAddOfNat
Int.cast_zero
MulZeroClass.zero_mul
Matrix.cons_val_fin_one
zero_add
zpow_neg
two_mul_riemannZeta_eq_tsum_int_inv_pow_of_even

---

← Back to Index