Documentation Verification Report

Transform

📁 Source: Mathlib/NumberTheory/ModularForms/EisensteinSeries/E2/Transform.lean

Statistics

MetricCount
Definitions0
TheoremsE2_slash_action, G2_S_transform, G2_T_transform, G2_slash_action
4
Total4

EisensteinSeries

Theorems

NameKindAssumesProvesValidatesDepends On
E2_slash_action 📖mathematicalSlashAction.map
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
Matrix.SpecialLinearGroup.monoid
Pi.addMonoid
UpperHalfPlane
Complex
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Complex.instNormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ModularForm.SLAction
E2
Pi.instSub
Complex.instSub
Function.hasSMul
Algebra.toSMul
Complex.instCommSemiring
CommSemiring.toSemiring
Algebra.id
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instOne
Complex.instMul
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
riemannZeta
D2
Nat.instAtLeastTwoHAddOfNat
one_div
mul_inv_rev
ModularForm.SL_smul_slash
IsScalarTower.right
G2_slash_action
mul_sub
G2_S_transform 📖mathematicalG2
Complex
Complex.instSub
Complex.instMul
Complex.instInv
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
UpperHalfPlane.coe
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
UpperHalfPlane
SemigroupAction.toSMul
Monoid.toSemigroup
Matrix.SpecialLinearGroup.monoid
MulAction.toSemigroupAction
UpperHalfPlane.SLAction
Ring.toIntAlgebra
Real
Real.instRing
ModularGroup.S
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instNeg
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal
Real.pi
Complex.I
Nat.instAtLeastTwoHAddOfNat
G2_T_transform 📖mathematicalSlashAction.map
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
Matrix.SpecialLinearGroup.monoid
Pi.addMonoid
UpperHalfPlane
Complex
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Complex.instNormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ModularForm.SLAction
ModularGroup.T
G2
ModularForm.SL_slash_def
UpperHalfPlane.modular_T_smul
Nat.instAtLeastTwoHAddOfNat
G2_eq_tsum_cexp
Matrix.cons_val'
Matrix.cons_val_fin_one
Int.cast_zero
MulZeroClass.zero_mul
Int.cast_one
zero_add
zpow_neg
one_zpow
inv_one
mul_one
Function.Periodic.nat_mul
Complex.exp_periodic
Nat.cast_one
one_mul
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Complex.instCharZero
isReduced_of_noZeroDivisors
Nat.instCharZero
G2_slash_action 📖mathematicalSlashAction.map
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
Matrix.SpecialLinearGroup.monoid
Pi.addMonoid
UpperHalfPlane
Complex
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Complex.instNormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ModularForm.SLAction
G2
Pi.instSub
Complex.instSub
D2
SpecialLinearGroup.SL2Z_generators
Subgroup.closure_induction
UpperHalfPlane.im_inv_neg_coe_pos
Nat.instAtLeastTwoHAddOfNat
SlashInvariantForm.slash_S_apply
mul_comm
G2_S_transform
UpperHalfPlane.modular_S_smul
D2_S
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsRat.to_isInt
Mathlib.Meta.NormNum.isRat_inv_neg
Complex.instCharZero
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
mul_one
add_zero
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.div_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
zpow_neg
inv_pow
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
D2_T
sub_zero
G2_T_transform
SlashAction.slash_one
D2_one
D2_mul
SlashAction.slash_mul
sub_eq_add_neg
SlashAction.add_slash
SlashAction.neg_slash
mul_inv_cancel
D2_inv
ModularForm.SL_slash
sub_neg_eq_add
add_sub_cancel_right

---

← Back to Index