Documentation Verification Report

QExpansion

πŸ“ Source: Mathlib/NumberTheory/ModularForms/EisensteinSeries/QExpansion.lean

Statistics

MetricCount
Definitions0
TheoremsqExpansion_identity, qExpansion_identity_pnat, q_expansion_bernoulli, q_expansion_riemannZeta, contDiffOn_tsum_cexp, differentiableAt_iteratedDerivWithin_cexp, eisSummand_of_gammaSet_eq_divIntMap, iteratedDerivWithin_tsum_cexp_eq, summableLocallyUniformlyOn_iteratedDerivWithin_cexp, summableLocallyUniformlyOn_iteratedDerivWithin_smul_cexp, summable_eisSummand, summable_pow_mul_cexp, summable_prod_eisSummand, tsum_eisSummand_eq_riemannZeta_mul_eisensteinSeries, tsum_eisSummand_eq_tsum_sigma_mul_cexp_pow
15
Total15

EisensteinSeries

Theorems

NameKindAssumesProvesValidatesDepends On
qExpansion_identity πŸ“–mathematicalβ€”tsum
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
CommCStarAlgebra.toNormedCommRing
instCommCStarAlgebraComplex
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.instAdd
UpperHalfPlane.coe
Complex.instIntCast
SummationFilter.unconditional
Complex.instMul
Complex.instNeg
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal
Real.pi
Complex.I
Nat.factorial
Complex.exp
β€”Nat.instAtLeastTwoHAddOfNat
iteratedDerivWithin_cot_pi_mul_eq_mul_tsum_div_pow
UpperHalfPlane.coe_im_pos
iteratedDerivWithin_congr
pi_mul_cot_pi_q_exp
eq_inv_mul_iff_mul_eqβ‚€
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
isReduced_of_noZeroDivisors
Complex.instNontrivial
NeZero.charZero_one
Complex.instCharZero
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Complex.instT2Space
neg_pow
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
neg_mul
mul_neg
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Meta.NormNum.isInt_eq_false
Mathlib.Meta.NormNum.isInt_neg
Nat.cast_one
Nat.cast_zero
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
CharZero.NeZero.two
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
add_zero
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.RingNF.mul_assoc_rev
Even.neg_pow
one_pow
qExpansion_identity_pnat πŸ“–mathematicalβ€”tsum
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
CommCStarAlgebra.toNormedCommRing
instCommCStarAlgebraComplex
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.instAdd
UpperHalfPlane.coe
Complex.instIntCast
SummationFilter.unconditional
Complex.instMul
Complex.instNeg
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal
Real.pi
Complex.I
Nat.factorial
PNat
PNat.val
Complex.exp
β€”Nat.instAtLeastTwoHAddOfNat
qExpansion_identity
tsum_zero_pnat_eq_tsum_nat
SeminormedAddCommGroup.toIsTopologicalAddGroup
Complex.instT2Space
Summable.congr
summable_pow_mul_cexp
Nat.cast_one
mul_one
neg_mul
CharP.cast_eq_zero
CharP.ofCharZero
Complex.instCharZero
zero_pow
pow_zero
zero_add
q_expansion_bernoulli πŸ“–mathematicalEvenDFunLike.coe
ModularForm
Subgroup.map
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
Matrix.SpecialLinearGroup.instGroup
Matrix.GeneralLinearGroup
Real
Real.semiring
Units.instGroup
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
Matrix.SpecialLinearGroup.mapGL
Real.commRing
Ring.toIntAlgebra
Real.instRing
CongruenceSubgroup.Gamma
UpperHalfPlane
Complex
ModularForm.funLike
ModularForm.E
Complex.instSub
Complex.instOne
Complex.instMul
DivInvMonoid.toDiv
Complex.instDivInvMonoid
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.instRatCast
bernoulli
tsum
PNat
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
CommCStarAlgebra.toNormedCommRing
instCommCStarAlgebraComplex
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
ArithmeticFunction.instFunLikeNat
ArithmeticFunction.sigma
PNat.val
DivInvMonoid.toZPow
Complex.exp
Complex.ofReal
Real.pi
Complex.I
UpperHalfPlane.coe
SummationFilter.unconditional
β€”Nat.instAtLeastTwoHAddOfNat
neg_mul
sub_eq_add_neg
q_expansion_riemannZeta
q_expansion_riemannZeta πŸ“–mathematicalEvenDFunLike.coe
ModularForm
Subgroup.map
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
Matrix.SpecialLinearGroup.instGroup
Matrix.GeneralLinearGroup
Real
Real.semiring
Units.instGroup
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
Matrix.SpecialLinearGroup.mapGL
Real.commRing
Ring.toIntAlgebra
Real.instRing
CongruenceSubgroup.Gamma
UpperHalfPlane
Complex
ModularForm.funLike
ModularForm.E
Complex.instAdd
Complex.instOne
Complex.instMul
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instInv
riemannZeta
Complex.instNatCast
Monoid.toNatPow
Complex.instSemiring
Complex.instNeg
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal
Real.pi
Complex.I
Nat.factorial
tsum
PNat
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
CommCStarAlgebra.toNormedCommRing
instCommCStarAlgebraComplex
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
ArithmeticFunction.instFunLikeNat
ArithmeticFunction.sigma
PNat.val
DivInvMonoid.toZPow
Complex.exp
UpperHalfPlane.coe
SummationFilter.unconditional
β€”Nat.instAtLeastTwoHAddOfNat
ModularForm.E.eq_1
ModularForm.IsGLPos.smul_apply
eisensteinSeriesSIF_apply
eisensteinSeries.eq_1
tsum_eisSummand_eq_tsum_sigma_mul_cexp_pow
tsum_eisSummand_eq_riemannZeta_mul_eisensteinSeries
riemannZeta_ne_zero_of_one_lt_re
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
one_div
zpow_neg
zpow_natCast
neg_mul
inv_mul_eq_iff_eq_mulβ‚€

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
contDiffOn_tsum_cexp πŸ“–mathematicalβ€”ContDiffOn
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
NonUnitalCStarAlgebra.toNormedSpace
NonUnitalCommCStarAlgebra.toNonUnitalCStarAlgebra
CommCStarAlgebra.toNonUnitalCommCStarAlgebra
instCommCStarAlgebraComplex
WithTop.some
ENat
tsum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
CommCStarAlgebra.toNormedCommRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.exp
Complex.instMul
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal
Real.pi
Complex.I
SummationFilter.unconditional
UpperHalfPlane.upperHalfPlaneSet
β€”contDiffOn_of_differentiableOn_deriv
Nat.instAtLeastTwoHAddOfNat
DifferentiableWithinAt.congr
SummableLocallyUniformlyOn.differentiableOn
Complex.instCompleteSpace
UpperHalfPlane.isOpen_upperHalfPlaneSet
summableLocallyUniformlyOn_iteratedDerivWithin_cexp
differentiableAt_iteratedDerivWithin_cexp
iteratedDerivWithin_tsum_cexp_eq
differentiableAt_iteratedDerivWithin_cexp πŸ“–mathematicalIsOpen
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
CommCStarAlgebra.toNormedCommRing
instCommCStarAlgebraComplex
Set
Set.instMembership
DifferentiableAt
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.addCommGroup
Complex.instModuleSelf
iteratedDerivWithin
Complex.instNormedAddCommGroup
NonUnitalCStarAlgebra.toNormedSpace
NonUnitalCommCStarAlgebra.toNonUnitalCStarAlgebra
CommCStarAlgebra.toNonUnitalCommCStarAlgebra
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.exp
Complex.instMul
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal
Real.pi
Complex.I
β€”DifferentiableOn.differentiableAt
Nat.instAtLeastTwoHAddOfNat
Differentiable.differentiableOn
ContDiff.differentiable_iteratedDeriv'
ContDiff.pow
ContDiff.cexp
ContDiff.mul
contDiff_const
contDiff_fun_id
DifferentiableOn.congr
iteratedDerivWithin_of_isOpen
IsOpen.mem_nhds
eisSummand_of_gammaSet_eq_divIntMap πŸ“–mathematicalβ€”EisensteinSeries.eisSummand
Set
Set.instMembership
EisensteinSeries.gammaSet
Pi.instZero
ZMod
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
Complex
Complex.instMul
Complex.instInv
DivInvMonoid.toZPow
Complex.instDivInvMonoid
Complex.instNatCast
EisensteinSeries.divIntMap
β€”EisensteinSeries.gammaSet_eq_gcd_mul_divIntMap
Int.cast_natCast
Int.cast_mul
mul_assoc
zpow_neg
mul_add
Distrib.leftDistribClass
iteratedDerivWithin_tsum_cexp_eq πŸ“–mathematicalβ€”iteratedDerivWithin
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
NonUnitalCStarAlgebra.toNormedSpace
NonUnitalCommCStarAlgebra.toNonUnitalCStarAlgebra
CommCStarAlgebra.toNonUnitalCommCStarAlgebra
instCommCStarAlgebraComplex
tsum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
CommCStarAlgebra.toNormedCommRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.exp
Complex.instMul
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal
Real.pi
Complex.I
SummationFilter.unconditional
UpperHalfPlane.upperHalfPlaneSet
UpperHalfPlane.coe
β€”Nat.instAtLeastTwoHAddOfNat
iteratedDerivWithin_tsum
instIsRCLikeNormedField
UpperHalfPlane.isOpen_upperHalfPlaneSet
UpperHalfPlane.coe_im_pos
summable_geometric_iff_norm_lt_one
UpperHalfPlane.norm_exp_two_pi_I_lt_one
summableLocallyUniformlyOn_iteratedDerivWithin_cexp
differentiableAt_iteratedDerivWithin_cexp
summableLocallyUniformlyOn_iteratedDerivWithin_cexp πŸ“–mathematicalβ€”SummableLocallyUniformlyOn
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
CommCStarAlgebra.toNormedCommRing
instCommCStarAlgebraComplex
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
iteratedDerivWithin
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
NonUnitalCStarAlgebra.toNormedSpace
NonUnitalCommCStarAlgebra.toNonUnitalCStarAlgebra
CommCStarAlgebra.toNonUnitalCommCStarAlgebra
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.exp
Complex.instMul
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal
Real.pi
Complex.I
UpperHalfPlane.upperHalfPlaneSet
β€”NormOneClass.norm_one
NormedDivisionRing.to_normOneClass
norm_pow
NormedDivisionRing.toNormMulClass
Real.norm_natCast
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
pow_one
one_mul
Nat.instAtLeastTwoHAddOfNat
div_one
one_smul
summableLocallyUniformlyOn_iteratedDerivWithin_smul_cexp
Mathlib.Meta.NormNum.isNat_lt_true
Real.instIsOrderedRing
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
summableLocallyUniformlyOn_iteratedDerivWithin_smul_cexp πŸ“–mathematicalReal
Real.instLT
Real.instZero
Asymptotics.IsBigO
Complex
Complex.instNorm
Real.norm
Filter.atTop
Nat.instPreorder
Monoid.toNatPow
Real.instMonoid
Real.instNatCast
SummableLocallyUniformlyOn
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
CommCStarAlgebra.toNormedCommRing
instCommCStarAlgebraComplex
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Function.hasSMul
Algebra.toSMul
Complex.instCommSemiring
CommSemiring.toSemiring
Algebra.id
iteratedDerivWithin
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
NonUnitalCStarAlgebra.toNormedSpace
NonUnitalCommCStarAlgebra.toNonUnitalCStarAlgebra
CommCStarAlgebra.toNonUnitalCommCStarAlgebra
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.exp
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instMul
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal
Real.pi
Complex.I
UpperHalfPlane.upperHalfPlaneSet
β€”SummableLocallyUniformlyOn_of_locally_bounded
Complex.instCompleteSpace
locallyCompact_of_proper
Complex.instProperSpace
Nat.instAtLeastTwoHAddOfNat
UpperHalfPlane.isOpen_upperHalfPlaneSet
isCompact_univ_iff
isCompact_iff_isCompact_univ
Continuous.cexp
Continuous.comp'
Continuous.div_const
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
continuous_id'
Continuous.fun_mul
continuous_const
continuous_subtype_val
norm_norm
BoundedContinuousFunction.norm_lt_iff_of_compact
Real.zero_lt_one
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Complex.instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.mul_assoc_rev
add_zero
UpperHalfPlane.norm_exp_two_pi_I_lt_one
Complex.div_ofReal_im
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Complex.norm_mul
norm_pow
NormedDivisionRing.to_normOneClass
NormedDivisionRing.toNormMulClass
Complex.norm_div
Complex.norm_ofNat
Complex.norm_real
Complex.norm_I
mul_one
RCLike.norm_natCast
norm_mul
norm_div
Real.norm_ofNat
abs_abs
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
summable_norm_mul_geometric_of_norm_lt_one'
Asymptotics.isBigO_norm_left
pow_le_pow_leftβ‚€
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
norm_nonneg
BoundedContinuousFunction.norm_coe_le_norm
Complex.norm_natCast
abs_norm
mul_assoc
mul_le_mul_of_nonneg_left
Complex.exp_nsmul'
mul_nonneg
pow_nonneg
IsOrderedRing.toZeroLEOneClass
Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
le_of_lt
mul_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
abs_pos_of_pos
Real.pi_pos
Nat.cast_nonneg'
Real.instZeroLEOneClass
summable_eisSummand πŸ“–mathematicalβ€”Summable
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
CommCStarAlgebra.toNormedCommRing
instCommCStarAlgebraComplex
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
EisensteinSeries.eisSummand
SummationFilter.unconditional
β€”summable_norm_iff
Complex.instFiniteDimensionalReal
EisensteinSeries.summable_norm_eisSummand
summable_pow_mul_cexp πŸ“–mathematicalβ€”Summable
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
CommCStarAlgebra.toNormedCommRing
instCommCStarAlgebraComplex
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Complex.instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.instNatCast
Complex.exp
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal
Real.pi
Complex.I
PNat.val
UpperHalfPlane.coe
SummationFilter.unconditional
β€”MulZeroClass.zero_mul
add_zero
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Real.instIsOrderedRing
Real.instNontrivial
UpperHalfPlane.coe_im_pos
Summable.congr
Nat.instAtLeastTwoHAddOfNat
SummableLocallyUniformlyOn.summable
summableLocallyUniformlyOn_iteratedDerivWithin_smul_cexp
Mathlib.Meta.NormNum.isNat_lt_true
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Nat.cast_one
Complex.ofReal_pow
summable_prod_eisSummand πŸ“–mathematicalβ€”Summable
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
CommCStarAlgebra.toNormedCommRing
instCommCStarAlgebraComplex
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
EisensteinSeries.eisSummand
Matrix.vecCons
Matrix.vecEmpty
SummationFilter.unconditional
β€”Equiv.summable_iff
Summable.congr
summable_eisSummand
tsum_eisSummand_eq_riemannZeta_mul_eisensteinSeries πŸ“–mathematicalβ€”tsum
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
CommCStarAlgebra.toNormedCommRing
instCommCStarAlgebraComplex
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
EisensteinSeries.eisSummand
SummationFilter.unconditional
Complex.instMul
riemannZeta
Complex.instNatCast
eisensteinSeries
Pi.instZero
ZMod
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
β€”Int.instAddLeftMono
Int.instZeroLEOneClass
Int.instCharZero
Equiv.tsum_eq
eisensteinSeries.eq_1
Summable.tsum_sigma
SeminormedAddCommGroup.to_isUniformAddGroup
Complex.instCompleteSpace
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
Summable.congr
Equiv.summable_iff
Summable.of_norm
EisensteinSeries.summable_norm_eisSummand
zeta_nat_eq_tsum_of_gt_one
tsum_mul_tsum_of_summable_norm
one_div
norm_inv
norm_pow
NormedDivisionRing.to_normOneClass
NormedDivisionRing.toNormMulClass
RCLike.norm_natCast
Summable.subtype
instIsUniformAddGroupReal
Real.instCompleteSpace
Summable.tsum_prod'
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
T4Space.t3Space
T4Space.of_paracompactSpace_t2Space
Complex.instT2Space
Metric.instParacompactSpace
summable_mul_of_summable_norm
Summable.mul_left
tsum_congr
eq_or_ne
eisSummand_of_gammaSet_eq_divIntMap
CharP.cast_eq_zero
CharP.ofCharZero
Complex.instCharZero
zpow_natCast
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
Complex.instNontrivial
Nat.instCanonicallyOrderedAdd
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
MulZeroClass.zero_mul
tsum_zero
Nat.cast_one
one_pow
inv_one
one_mul
tsum_mul_left
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
tsum_eisSummand_eq_tsum_sigma_mul_cexp_pow πŸ“–mathematicalEventsum
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
CommCStarAlgebra.toNormedCommRing
instCommCStarAlgebraComplex
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
EisensteinSeries.eisSummand
SummationFilter.unconditional
Complex.instAdd
Complex.instMul
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
riemannZeta
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.instNeg
Complex.ofReal
Real.pi
Complex.I
Nat.factorial
PNat
DFunLike.coe
ArithmeticFunction
MulZeroClass.toZero
Nat.instMulZeroClass
ArithmeticFunction.instFunLikeNat
ArithmeticFunction.sigma
PNat.val
Complex.exp
UpperHalfPlane.coe
β€”Nat.instAtLeastTwoHAddOfNat
Equiv.tsum_eq
finTwoArrowEquiv_symm_apply
Summable.tsum_prod
SeminormedAddCommGroup.to_isUniformAddGroup
Complex.instCompleteSpace
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
summable_prod_eisSummand
tsum_int_eq_zero_add_two_mul_tsum_pnat
Complex.instT2Space
tsum_comp_neg
tsum_congr
Int.cast_neg
neg_mul
Matrix.cons_val_fin_one
neg_add
zpow_neg
zpow_natCast
Even.neg_pow
Summable.prod
MulZeroClass.zero_mul
add_zero
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Real.instIsOrderedRing
Real.instNontrivial
UpperHalfPlane.coe_im_pos
EisensteinSeries.qExpansion_identity_pnat
nsmul_eq_mul
mul_assoc
Int.cast_zero
zero_add
two_mul_riemannZeta_eq_tsum_int_inv_pow_of_even
tsum_congrβ‚‚
Nat.cast_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.mul_assoc_rev
mul_one
Int.cast_natCast
one_div
tsum_mul_left
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
tsum_prod_pow_eq_tsum_sigma
RCLike.instNormSMulClassInt
UpperHalfPlane.norm_exp_two_pi_I_lt_one

---

← Back to Index