Documentation Verification Report

Summable

πŸ“ Source: Mathlib/NumberTheory/ModularForms/EisensteinSeries/Summable.lean

Statistics

MetricCount
Definitionsr, r1
2
Theoremsabs_le_left_of_norm, abs_le_right_of_norm, abs_norm_eq_max_natAbs, abs_norm_eq_max_natAbs_neg, auxbound1, auxbound2, div_max_sq_ge_one, isBigO_linear_add_const_vec, isLittleO_const_left_of_properSpace_of_discreteTopology, linear_inv_isBigO_left, linear_inv_isBigO_right, linear_inv_isBigO_right_add, linear_isTheta_left, linear_isTheta_right, linear_isTheta_right_add, linear_left_summable, linear_right_summable, norm_eq_max_natAbs, norm_symm, r1_aux_bound, r1_eq, r1_pos, r_lower_bound_on_verticalStrip, r_mul_max_le, r_pos, summable_inv_of_isBigO_rpow_inv, summable_linear_left_mul_linear_left, summable_linear_right_add_one_mul_linear_right, summable_linear_sub_mul_linear_add, summable_of_isBigO_rpow_norm, summable_one_div_norm_rpow, summand_bound, summand_bound_of_mem_verticalStrip, tendsto_zero_inv_linear, tendsto_zero_inv_linear_sub, vec_add_const_isTheta
36
Total38

EisensteinSeries

Definitions

NameCategoryTheorems
r πŸ“–CompOp
7 mathmath: summand_bound_of_mem_verticalStrip, r_lower_bound_on_verticalStrip, r_pos, auxbound1, auxbound2, r_mul_max_le, summand_bound
r1 πŸ“–CompOp
3 mathmath: r1_aux_bound, r1_pos, r1_eq

Theorems

NameKindAssumesProvesValidatesDepends On
abs_le_left_of_norm πŸ“–mathematicalβ€”Real
Real.instLE
Real.instIntCast
abs
instLatticeInt
Int.instAddGroup
Norm.norm
NormedRing.toNorm
Pi.normedRing
Fin.fintype
NormedCommRing.toNormedRing
Int.instNormedCommRing
Matrix.vecCons
Matrix.vecEmpty
β€”norm_eq_max_natAbs
Matrix.cons_val_fin_one
Nat.cast_max
Real.instIsStrictOrderedRing
Int.abs_eq_natAbs
le_refl
abs_le_right_of_norm πŸ“–mathematicalβ€”Real
Real.instLE
Real.instIntCast
abs
instLatticeInt
Int.instAddGroup
Norm.norm
NormedRing.toNorm
Pi.normedRing
Fin.fintype
NormedCommRing.toNormedRing
Int.instNormedCommRing
Matrix.vecCons
Matrix.vecEmpty
β€”norm_eq_max_natAbs
Matrix.cons_val_fin_one
Nat.cast_max
Real.instIsStrictOrderedRing
Int.abs_eq_natAbs
le_refl
abs_norm_eq_max_natAbs πŸ“–mathematicalβ€”Norm.norm
NormedRing.toNorm
Pi.normedRing
Fin.fintype
NormedCommRing.toNormedRing
Int.instNormedCommRing
Matrix.vecCons
Matrix.vecEmpty
Real
Real.instAdd
Real.instNatCast
Real.instOne
β€”norm_eq_max_natAbs
Matrix.cons_val_fin_one
Nat.cast_one
RCLike.charZero_rclike
abs_norm_eq_max_natAbs_neg πŸ“–mathematicalβ€”Norm.norm
NormedRing.toNorm
Pi.normedRing
Fin.fintype
NormedCommRing.toNormedRing
Int.instNormedCommRing
Matrix.vecCons
Matrix.vecEmpty
Real
Real.instAdd
Real.instNatCast
Real.instOne
β€”norm_eq_max_natAbs
Matrix.cons_val_fin_one
Nat.cast_one
RCLike.charZero_rclike
auxbound1 πŸ“–mathematicalReal
Real.instLE
Real.instOne
Monoid.toNatPow
Real.instMonoid
r
Norm.norm
Complex
Complex.instNorm
Complex.instAdd
Complex.instMul
Complex.ofReal
UpperHalfPlane.coe
β€”Real.le_sqrt'
Complex.im_ofReal_mul
mul_pow
LE.le.trans
le_mul_of_one_le_left
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
sq_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
le_add_of_nonneg_left
covariant_swap_add_of_covariant_add
Complex.re_ofReal_mul
MulZeroClass.zero_mul
add_zero
auxbound2 πŸ“–mathematicalReal
Real.instLE
Real.instOne
Monoid.toNatPow
Real.instMonoid
r
Norm.norm
Complex
Complex.instNorm
Complex.instAdd
Complex.instMul
Complex.ofReal
UpperHalfPlane.coe
β€”Real.sqrt_le_sqrt_iff
add_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Even.pow_nonneg
IsStrictOrderedRing.toIsOrderedRing
Real.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Nat.instAtLeastTwoHAddOfNat
even_two_mul
r1_aux_bound
Complex.re_ofReal_mul
Complex.im_ofReal_mul
add_zero
div_max_sq_ge_one πŸ“–mathematicalβ€”Real
Real.instLE
Real.instOne
Monoid.toNatPow
Real.instMonoid
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instIntCast
Norm.norm
NormedRing.toNorm
Pi.normedRing
Fin.fintype
NormedCommRing.toNormedRing
Int.instNormedCommRing
β€”Nat.cast_ne_zero
RCLike.charZero_rclike
norm_eq_max_natAbs
norm_ne_zero_iff
Nat.cast_natAbs
Int.cast_abs
Real.instIsStrictOrderedRing
div_pow
sq_abs
div_self
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
max_choice
isBigO_linear_add_const_vec πŸ“–mathematicalβ€”Asymptotics.IsBigO
Complex
Real
Complex.instNorm
Real.norm
Filter.cofinite
Complex.instInv
Complex.instAdd
Complex.instMul
Complex.instIntCast
UpperHalfPlane.coe
Real.instInv
Norm.norm
NormedRing.toNorm
Pi.normedRing
Fin.fintype
NormedCommRing.toNormedRing
Int.instNormedCommRing
β€”Asymptotics.IsBigO.trans
Asymptotics.IsTheta.isBigO
vec_add_const_isTheta
isLittleO_const_left_of_properSpace_of_discreteTopology πŸ“–mathematicalβ€”Asymptotics.IsLittleO
Real
NormedAddCommGroup.toNorm
Real.norm
Filter.cofinite
Norm.norm
β€”norm_norm
tendsto_norm_comp_cofinite_atTop_of_isClosedEmbedding
Topology.IsClosedEmbedding.id
linear_inv_isBigO_left πŸ“–mathematicalβ€”Asymptotics.IsBigO
Complex
Real
Complex.instNorm
Real.norm
Filter.cofinite
Complex.instInv
Complex.instAdd
Complex.instMul
Complex.instIntCast
Real.instInv
Real.instIntCast
β€”Asymptotics.IsTheta.isBigO
Asymptotics.IsTheta.inv
linear_isTheta_left
linear_inv_isBigO_right πŸ“–mathematicalβ€”Asymptotics.IsBigO
Complex
Real
Complex.instNorm
Real.norm
Filter.cofinite
Complex.instInv
Complex.instAdd
Complex.instMul
Complex.instIntCast
Real.instInv
Real.instIntCast
β€”β€”
linear_inv_isBigO_right_add πŸ“–mathematicalβ€”Asymptotics.IsBigO
Complex
Real
Complex.instNorm
Real.norm
Filter.cofinite
Complex.instInv
Complex.instAdd
Complex.instMul
Complex.instIntCast
Real.instInv
Real.instIntCast
β€”Asymptotics.IsTheta.isBigO
Asymptotics.IsTheta.inv
linear_isTheta_right_add
linear_isTheta_left πŸ“–mathematicalβ€”Asymptotics.IsTheta
Complex
Real
Complex.instNorm
Real.norm
Filter.cofinite
Complex.instAdd
Complex.instMul
Complex.instIntCast
Real.instIntCast
β€”Asymptotics.IsTheta.add_isLittleO
mul_comm
Asymptotics.IsTheta.const_mul_left
Int.cast_complex_isTheta_cast_real
Complex.instCharZero
tendsto_norm_comp_cofinite_atTop_of_isClosedEmbedding
instDiscreteTopologyInt
instProperSpaceReal
Int.isClosedEmbedding_coe_real
linear_isTheta_right πŸ“–mathematicalβ€”Asymptotics.IsTheta
Complex
Real
Complex.instNorm
Real.norm
Filter.cofinite
Complex.instAdd
Complex.instMul
Complex.instIntCast
Real.instIntCast
β€”Int.cofinite_eq
Int.cast_zero
add_zero
linear_isTheta_right_add
linear_isTheta_right_add πŸ“–mathematicalβ€”Asymptotics.IsTheta
Complex
Real
Complex.instNorm
Real.norm
Filter.cofinite
Complex.instAdd
Complex.instMul
Complex.instIntCast
Real.instIntCast
β€”Asymptotics.IsTheta.add_isLittleO
Asymptotics.IsLittleO.add_isTheta
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Complex.instCharZero
tendsto_norm_comp_cofinite_atTop_of_isClosedEmbedding
instDiscreteTopologyInt
instProperSpaceReal
Int.isClosedEmbedding_coe_real
Int.cast_complex_isTheta_cast_real
linear_left_summable πŸ“–mathematicalβ€”Summable
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Complex.instInv
DivInvMonoid.toZPow
Complex.instDivInvMonoid
Complex.instAdd
Complex.instMul
Complex.instIntCast
SummationFilter.unconditional
β€”summable_inv_of_isBigO_rpow_inv
Complex.instCompleteSpace
Nat.cast_one
Int.cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
CanLift.prf
instCanLiftIntNatCastLeOfNat
zpow_natCast
Int.cast_natCast
Real.rpow_natCast
Real.instIsStrictOrderedRing
Asymptotics.IsBigO.pow
NormedDivisionRing.toNormMulClass
NormedDivisionRing.to_normOneClass
Asymptotics.IsBigO.abs_right
linear_inv_isBigO_left
linear_right_summable πŸ“–mathematicalβ€”Summable
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Complex.instInv
DivInvMonoid.toZPow
Complex.instDivInvMonoid
Complex.instAdd
Complex.instMul
Complex.instIntCast
SummationFilter.unconditional
β€”summable_inv_of_isBigO_rpow_inv
Complex.instCompleteSpace
Nat.cast_one
Int.cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
CanLift.prf
instCanLiftIntNatCastLeOfNat
norm_eq_max_natAbs πŸ“–mathematicalβ€”Norm.norm
NormedRing.toNorm
Pi.normedRing
Fin.fintype
NormedCommRing.toNormedRing
Int.instNormedCommRing
Real
Real.instNatCast
β€”coe_nnnorm
NNReal.coe_natCast
Nat.cast_max
NNReal.instIsStrictOrderedRing
eq_of_forall_ge_iff
NNReal.natCast_natAbs
norm_symm πŸ“–mathematicalβ€”Norm.norm
NormedRing.toNorm
Pi.normedRing
Fin.fintype
NormedCommRing.toNormedRing
Int.instNormedCommRing
Matrix.vecCons
Matrix.vecEmpty
β€”norm_eq_max_natAbs
Matrix.cons_val_fin_one
Nat.cast_max
Real.instIsStrictOrderedRing
Nat.cast_natAbs
Int.cast_abs
max_comm
r1_aux_bound πŸ“–mathematicalReal
Real.instLE
Real.instOne
Monoid.toNatPow
Real.instMonoid
r1
Real.instAdd
Real.instMul
UpperHalfPlane.re
UpperHalfPlane.im
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Nat.cast_one
r1.eq_1
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Even.pow_nonneg
IsStrictOrderedRing.toIsOrderedRing
AddGroup.existsAddOfLE
even_two_mul
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
UpperHalfPlane.im_pos
sub_nonneg
add_nonneg
sq_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
mul_nonneg
r1_eq πŸ“–mathematicalβ€”r1
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Real.instAdd
Monoid.toNatPow
Real.instMonoid
UpperHalfPlane.re
UpperHalfPlane.im
β€”div_pow
div_add_one
ne_of_gt
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
UpperHalfPlane.im_pos
one_div_div
r1.eq_1
r1_pos πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
r1
β€”div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
UpperHalfPlane.im_pos
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Even.pow_nonneg
IsStrictOrderedRing.toIsOrderedRing
AddGroup.existsAddOfLE
Nat.instAtLeastTwoHAddOfNat
even_two_mul
r_lower_bound_on_verticalStrip πŸ“–mathematicalReal
Real.instLT
Real.instZero
UpperHalfPlane
Set
Set.instMembership
UpperHalfPlane.verticalStrip
Real.instLE
r
β€”min_le_min
Real.sqrt_monotone
r1_eq
div_pow
one_div
inv_le_invβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
Even.pow_nonneg
IsStrictOrderedRing.toIsOrderedRing
AddGroup.existsAddOfLE
Nat.instAtLeastTwoHAddOfNat
even_two_mul
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
UpperHalfPlane.im_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
add_le_add_iff_right
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Even.pow_abs
even_two
div_le_divβ‚€
pow_le_pow_leftβ‚€
IsOrderedRing.toPosMulMono
IsOrderedRing.toMulPosMono
abs_nonneg
le_of_lt
r_mul_max_le πŸ“–mathematicalβ€”Real
Real.instLE
Real.instMul
r
Norm.norm
NormedRing.toNorm
Pi.normedRing
Fin.fintype
NormedCommRing.toNormedRing
Int.instNormedCommRing
Complex
Complex.instNorm
Complex.instAdd
Complex.instMul
Complex.instIntCast
UpperHalfPlane.coe
β€”norm_ne_zero_iff
div_mul_eq_mul_div
add_div
div_mul_cancelβ‚€
Nat.cast_zero
norm_eq_max_natAbs
norm_mul
NormedDivisionRing.toNormMulClass
Complex.norm_real
norm_norm
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
div_max_sq_ge_one
Complex.ofReal_div
auxbound1
auxbound2
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
r_pos πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
r
β€”β€”
summable_inv_of_isBigO_rpow_inv πŸ“–mathematicalReal
Real.instLT
Real.instOne
Asymptotics.IsBigO
NormedField.toNorm
Real.norm
Filter.cofinite
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
NormedField.toField
Real.instInv
Real.instPow
abs
Real.lattice
Real.instAddGroup
Real.instIntCast
Summable
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
SummationFilter.unconditional
β€”summable_of_isBigO
Summable.congr
Real.summable_abs_int_rpow
Real.rpow_neg
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
summable_linear_left_mul_linear_left πŸ“–mathematicalβ€”Summable
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Complex.instInv
Complex.instMul
Complex.instAdd
Complex.instIntCast
SummationFilter.unconditional
β€”summable_inv_of_isBigO_rpow_inv
Complex.instCompleteSpace
Nat.instAtLeastTwoHAddOfNat
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
Real.rpow_two
pow_two
abs_mul_abs_self
Int.cofinite_eq
mul_inv_rev
Asymptotics.IsBigO.mul
NormedDivisionRing.toNormMulClass
linear_inv_isBigO_left
summable_linear_right_add_one_mul_linear_right πŸ“–mathematicalβ€”Summable
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Complex.instInv
Complex.instMul
Complex.instAdd
Complex.instIntCast
Complex.instOne
SummationFilter.unconditional
β€”summable_inv_of_isBigO_rpow_inv
Complex.instCompleteSpace
Nat.instAtLeastTwoHAddOfNat
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
Int.cofinite_eq
mul_inv_rev
Real.rpow_ofNat
pow_two
abs_mul_abs_self
Int.cast_one
Asymptotics.IsBigO.mul
NormedDivisionRing.toNormMulClass
linear_inv_isBigO_right
linear_inv_isBigO_right_add
summable_linear_sub_mul_linear_add πŸ“–mathematicalβ€”Summable
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Complex.instInv
Complex.instMul
Complex.instSub
Complex.instIntCast
Complex.instAdd
SummationFilter.unconditional
β€”summable_inv_of_isBigO_rpow_inv
Complex.instCompleteSpace
Nat.instAtLeastTwoHAddOfNat
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
Int.cofinite_eq
mul_inv_rev
Real.rpow_ofNat
pow_two
abs_mul_abs_self
Int.cast_neg
inv_neg
mul_neg
Asymptotics.IsBigO.mul
NormedDivisionRing.toNormMulClass
linear_inv_isBigO_right
Asymptotics.IsBigO.comp_neg_int
summable_of_isBigO_rpow_norm πŸ“–mathematicalReal
Real.instLT
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Asymptotics.IsBigO
NormedAddCommGroup.toNorm
Real.norm
Filter.cofinite
Real.instInv
Real.instPow
Norm.norm
NormedRing.toNorm
Pi.normedRing
Fin.fintype
NormedCommRing.toNormedRing
Int.instNormedCommRing
Summable
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SummationFilter.unconditional
β€”Nat.instAtLeastTwoHAddOfNat
summable_of_isBigO
Summable.congr
summable_one_div_norm_rpow
Real.rpow_neg
norm_nonneg
summable_one_div_norm_rpow πŸ“–mathematicalReal
Real.instLT
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instPow
Norm.norm
NormedRing.toNorm
Pi.normedRing
Fin.fintype
NormedCommRing.toNormedRing
Int.instNormedCommRing
Real.instNeg
SummationFilter.unconditional
β€”Nat.instAtLeastTwoHAddOfNat
Equiv.summable_iff
summable_partition
Real.rpow_nonneg
norm_nonneg
Int.existsUnique_mem_box
HasSum.summable
hasSum_fintype
SummationFilter.instLeAtTopUnconditional
tsum_fintype
Finset.sum_const
Finset.card_attach
nsmul_eq_mul
Summable.of_norm_bounded_eventually_nat
Real.instCompleteSpace
Summable.mul_left
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Real.summable_nat_rpow
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_congr
Nat.cast_one
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Filter.mp_mem
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
Filter.univ_mem'
Int.card_box
LT.lt.ne'
Real.norm_of_nonneg
le_of_lt
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Real.rpow_pos_of_pos
sub_eq_add_neg
Real.rpow_add
Nat.cast_pos
Real.instNontrivial
Real.rpow_one
Nat.cast_mul
Nat.cast_ofNat
mul_assoc
le_refl
Summable.congr
tsum_congr
Int.mem_box
Nat.cast_max
norm_eq_max_natAbs
summand_bound πŸ“–mathematicalReal
Real.instLE
Real.instZero
Real.instPow
Norm.norm
Complex
Complex.instNorm
Complex.instAdd
Complex.instMul
Complex.instIntCast
UpperHalfPlane.coe
Real.instNeg
Real.instMul
r
NormedRing.toNorm
Pi.normedRing
Fin.fintype
NormedCommRing.toNormedRing
Int.instNormedCommRing
β€”Int.cast_zero
MulZeroClass.zero_mul
add_zero
norm_zero
Real.rpow_zero
one_mul
le_refl
Real.zero_rpow
MulZeroClass.mul_zero
Real.mul_rpow
LT.lt.le
r_pos
norm_nonneg
Real.rpow_le_rpow_of_nonpos
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_pos_iff
r_mul_max_le
neg_nonpos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
summand_bound_of_mem_verticalStrip πŸ“–mathematicalReal
Real.instLE
Real.instZero
Real.instLT
UpperHalfPlane
Set
Set.instMembership
UpperHalfPlane.verticalStrip
Real.instPow
Norm.norm
Complex
Complex.instNorm
Complex.instAdd
Complex.instMul
Complex.instIntCast
UpperHalfPlane.coe
Real.instNeg
Real.instMul
r
NormedRing.toNorm
Pi.normedRing
Fin.fintype
NormedCommRing.toNormedRing
Int.instNormedCommRing
β€”LE.le.trans
summand_bound
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
Real.rpow_le_rpow_of_nonpos
r_pos
r_lower_bound_on_verticalStrip
neg_nonpos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.rpow_nonneg
norm_nonneg
tendsto_zero_inv_linear πŸ“–mathematicalβ€”Filter.Tendsto
Complex
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instOne
Complex.instAdd
Complex.instMul
Complex.instIntCast
Complex.instNatCast
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instZero
β€”Asymptotics.IsBigO.trans_tendsto
Asymptotics.isBigO_sup
linear_inv_isBigO_right
Int.cofinite_eq
one_div
tendsto_inv_atTop_nhds_zero_nat
RCLike.charZero_rclike
NNRat.instContinuousSMulOfIsScalarTowerOfRat
IsScalarTower.nnrat
Rat.instCharZero
NNRat.instContinuousSMulRatReal
tendsto_zero_inv_linear_sub πŸ“–mathematicalβ€”Filter.Tendsto
Complex
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instOne
Complex.instSub
Complex.instMul
Complex.instIntCast
Complex.instNatCast
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instZero
β€”β€”
vec_add_const_isTheta πŸ“–mathematicalβ€”Asymptotics.IsTheta
Real
Real.norm
Filter.cofinite
Real.instInv
Norm.norm
NormedRing.toNorm
Pi.normedRing
Fin.fintype
NormedCommRing.toNormedRing
Int.instNormedCommRing
Matrix.vecCons
Matrix.vecEmpty
β€”Asymptotics.IsTheta.add_isLittleO
Asymptotics.isTheta_norm_left
Asymptotics.isTheta_refl
isLittleO_const_left_of_properSpace_of_discreteTopology
Pi.discreteTopology
Finite.of_fintype
instDiscreteTopologyInt
pi_properSpace
Int.instProperSpace

---

← Back to Index