Documentation Verification Report

Bounds

πŸ“ Source: Mathlib/NumberTheory/ModularForms/JacobiTheta/Bounds.lean

Statistics

MetricCount
DefinitionsF_int, F_nat, f_int, f_nat, g_nat
5
TheoremsF_int_eq_of_mem_Icc, F_nat_one_le, F_nat_zero_le, F_nat_zero_zero_sub_le, f_int_negSucc, f_int_ofNat, f_le_g_nat, isBigO_atTop_F_int_one, isBigO_atTop_F_int_zero_sub, isBigO_atTop_F_nat_one, isBigO_atTop_F_nat_zero_sub, isBigO_exp_neg_mul_of_le, summable_f_int, summable_f_nat
14
Total19

HurwitzKernelBounds

Definitions

NameCategoryTheorems
F_int πŸ“–CompOp
3 mathmath: isBigO_atTop_F_int_one, F_int_eq_of_mem_Icc, isBigO_atTop_F_int_zero_sub
F_nat πŸ“–CompOp
6 mathmath: F_nat_one_le, isBigO_atTop_F_nat_one, isBigO_atTop_F_nat_zero_sub, F_int_eq_of_mem_Icc, F_nat_zero_zero_sub_le, F_nat_zero_le
f_int πŸ“–CompOp
3 mathmath: f_int_negSucc, f_int_ofNat, summable_f_int
f_nat πŸ“–CompOp
4 mathmath: f_int_negSucc, f_le_g_nat, summable_f_nat, f_int_ofNat
g_nat πŸ“–CompOp
1 mathmath: f_le_g_nat

Theorems

NameKindAssumesProvesValidatesDepends On
F_int_eq_of_mem_Icc πŸ“–mathematicalReal
Set
Set.instMembership
Set.Icc
Real.instPreorder
Real.instZero
Real.instOne
Real.instLT
F_int
AddCommGroup.toAddGroup
Real.instAddCommGroup
AddSubgroup.zmultiples
Real.instAdd
F_nat
Real.instSub
β€”f_int_ofNat
f_int_negSucc
HasSum.tsum_eq
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
SummationFilter.instNeBotUnconditional
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Summable.hasSum
summable_f_nat
F_nat_one_le πŸ“–mathematicalReal
Real.instLE
Real.instZero
Real.instLT
Norm.norm
Real.norm
F_nat
Real.instAdd
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.exp
Real.instMul
Real.instNeg
Real.pi
Monoid.toNatPow
Real.instMonoid
Real.instOne
Real.instSub
β€”tsum_of_norm_bounded
pow_one
add_mul
Distrib.rightDistribClass
HasSum.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Real.abs_exp
mul_comm
Real.exp_nat_mul
mul_assoc
Real.exp_add
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.RingNF.nat_rawCast_1
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
mul_one
Mathlib.Tactic.RingNF.mul_assoc_rev
add_zero
Mathlib.Tactic.RingNF.add_neg
mul_add
Distrib.leftDistribClass
mul_div_assoc
HasSum.mul_left
hasSum_coe_mul_geometric_of_norm_lt_one
Mathlib.Tactic.Ring.add_pf_add_gt
hasSum_geometric_of_lt_one
LT.lt.le
Real.exp_pos
f_le_g_nat
F_nat_zero_le πŸ“–mathematicalReal
Real.instLE
Real.instZero
Real.instLT
Norm.norm
Real.norm
F_nat
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.exp
Real.instMul
Real.instNeg
Real.pi
Monoid.toNatPow
Real.instMonoid
Real.instSub
Real.instOne
β€”tsum_of_norm_bounded
Real.exp_nat_mul
Real.exp_add
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
mul_one
Mathlib.Tactic.RingNF.mul_assoc_rev
add_zero
Mathlib.Tactic.RingNF.add_neg
Mathlib.Tactic.Ring.add_pf_add_gt
HasSum.mul_left
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
hasSum_geometric_of_lt_one
LT.lt.le
Real.exp_pos
f_le_g_nat
F_nat_zero_zero_sub_le πŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.instLE
Norm.norm
Real.norm
Real.instSub
F_nat
Real.instOne
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.exp
Real.instMul
Real.instNeg
Real.pi
β€”F_nat.eq_1
Summable.tsum_eq_zero_add
instIsTopologicalAddGroupReal
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
summable_f_nat
f_nat.eq_1
Nat.cast_zero
add_zero
pow_zero
one_mul
pow_two
MulZeroClass.mul_zero
MulZeroClass.zero_mul
Real.exp_zero
add_comm
add_sub_cancel_right
Nat.cast_add
Nat.cast_one
one_pow
mul_one
F_nat_zero_le
zero_le_one
Real.instZeroLEOneClass
f_int_negSucc πŸ“–mathematicalReal
Real.instLE
Real.instOne
f_int
f_nat
Real.instSub
β€”Int.cast_negSucc
Nat.cast_add
Nat.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
f_int.eq_1
f_nat.eq_1
abs_neg
neg_sq
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_nonpos
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Linarith.natCast_nonneg
Mathlib.Tactic.Linarith.sub_neg_of_lt
f_int_ofNat πŸ“–mathematicalReal
Real.instLE
Real.instZero
f_int
f_nat
β€”f_int.eq_1
f_nat.eq_1
Int.cast_natCast
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
add_nonneg
Nat.cast_nonneg'
Real.instZeroLEOneClass
f_le_g_nat πŸ“–mathematicalReal
Real.instLE
Real.instZero
Real.instLT
Norm.norm
Real.norm
f_nat
g_nat
β€”f_nat.eq_1
Real.norm_of_nonneg
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
pow_nonneg
IsOrderedRing.toZeroLEOneClass
add_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Nat.cast_nonneg'
Real.instZeroLEOneClass
le_of_lt
Real.exp_pos
g_nat.eq_1
Nat.instAtLeastTwoHAddOfNat
add_sq
neg_mul
mul_le_mul_of_nonneg_left
Real.exp_monotone
neg_le_neg
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
add_le_add_left
covariant_swap_add_of_covariant_add
RCLike.charZero_rclike
two_ne_zero
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.LinearCombination.le_of_le
Real.instIsOrderedCancelAddMonoid
add_le_add
Mathlib.Tactic.LinearCombination.le_rearrange
Mathlib.Tactic.Ring.le_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
le_refl
Real.pi_pos
isBigO_atTop_F_int_one πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
Asymptotics.IsBigO
Real.norm
Filter.atTop
Real.instPreorder
F_int
Real.exp
Real.instMul
Real.instNeg
β€”AddCircle.eq_coe_Ico
Real.instIsOrderedAddMonoid
ZeroLEOneClass.factZeroLtOne
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Real.instArchimedean
isBigO_atTop_F_nat_one
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
LT.lt.le
lt_min
Filter.mp_mem
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Filter.univ_mem'
F_int_eq_of_mem_Icc
Set.Ico_subset_Icc_self
Asymptotics.IsBigO.trans
Filter.EventuallyEq.isBigO
Asymptotics.IsBigO.add
isBigO_exp_neg_mul_of_le
min_le_left
min_le_right
isBigO_atTop_F_int_zero_sub πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
Asymptotics.IsBigO
Real.norm
Filter.atTop
Real.instPreorder
Real.instSub
F_int
UnitAddCircle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
QuotientAddGroup.Quotient.addCommGroup
Real.instAddCommGroup
AddSubgroup.zmultiples
AddCommGroup.toAddGroup
Real.instOne
QuotientAddGroup.instDecidableEqQuotientAddSubgroupOfDecidablePredMem
AddSubgroup.decidableMemZMultiples
Real.instAddGroup
Real.exp
Real.instMul
Real.instNeg
β€”AddCircle.eq_coe_Ico
Real.instIsOrderedAddMonoid
ZeroLEOneClass.factZeroLtOne
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Real.instArchimedean
isBigO_atTop_F_nat_zero_sub
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
LT.lt.le
AddCircle.coe_eq_zero_iff_of_mem_Ico
lt_min
Filter.mp_mem
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Filter.univ_mem'
F_int_eq_of_mem_Icc
Set.Ico_subset_Icc_self
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Asymptotics.IsBigO.trans
Filter.EventuallyEq.isBigO
Asymptotics.IsBigO.add
isBigO_exp_neg_mul_of_le
min_le_left
sub_zero
eq_false_intro
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.lt_of_eq_of_lt
sub_eq_zero_of_eq
Mathlib.Tactic.Linarith.sub_neg_of_lt
min_le_right
isBigO_atTop_F_nat_one πŸ“–mathematicalReal
Real.instLE
Real.instZero
Real.instLT
Asymptotics.IsBigO
Real.norm
Filter.atTop
Real.instPreorder
F_nat
Real.exp
Real.instMul
Real.instNeg
β€”inv_pow
one_pow
Asymptotics.IsBigO.pow
NormedDivisionRing.toNormMulClass
NormedDivisionRing.to_normOneClass
eq_or_lt_of_le
Real.pi_pos
zero_pow
two_ne_zero
zero_add
mul_one
MulZeroClass.zero_mul
zero_div
add_zero
Asymptotics.IsBigO.mul
Asymptotics.isBigO_refl
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
pow_pos
Real.instZeroLEOneClass
Asymptotics.IsBigO.add
Filter.Eventually.isBigO
Filter.mp_mem
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Filter.univ_mem'
Real.norm_of_nonneg
LT.lt.le
Real.exp_pos
Real.exp_le_exp
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_one
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
mul_pos_of_neg_of_neg
AddGroup.existsAddOfLE
IsStrictOrderedRing.toMulPosStrictMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
mul_div_assoc
Asymptotics.IsBigO.const_mul_left
Asymptotics.IsBigO.trans
F_nat_one_le
isBigO_atTop_F_nat_zero_sub πŸ“–mathematicalReal
Real.instLE
Real.instZero
Real.instLT
Asymptotics.IsBigO
Real.norm
Filter.atTop
Real.instPreorder
Real.instSub
F_nat
Real.decidableEq
Real.instOne
Real.exp
Real.instMul
Real.instNeg
β€”Filter.Eventually.isBigO
Filter.mp_mem
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Filter.univ_mem'
F_nat_zero_zero_sub_le
Real.pi_pos
Asymptotics.IsBigO.trans
neg_mul
mul_one
Asymptotics.IsBigO.mul
NormedDivisionRing.toNormMulClass
Asymptotics.isBigO_refl
sub_zero
F_nat_zero_le
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
sq_pos_of_ne_zero
AddGroup.existsAddOfLE
isBigO_exp_neg_mul_of_le πŸ“–mathematicalReal
Real.instLE
Asymptotics.IsBigO
Real.norm
Filter.atTop
Real.instPreorder
Real.exp
Real.instMul
Real.instNeg
β€”Filter.Eventually.isBigO
Filter.mp_mem
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Filter.univ_mem'
Real.norm_of_nonneg
LT.lt.le
Real.exp_pos
Real.exp_monotone
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
neg_le_neg
Real.instIsOrderedAddMonoid
le_of_lt
summable_f_int πŸ“–mathematicalReal
Real.instLT
Real.instZero
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
f_int
SummationFilter.unconditional
β€”Summable.of_norm
Real.instCompleteSpace
Int.cast_natCast
norm_mul
NormedDivisionRing.toNormMulClass
abs_pow
Real.instIsOrderedRing
abs_abs
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Int.cast_negSucc
Nat.cast_add
Nat.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
abs_neg
neg_sq
Summable.norm
FiniteDimensional.rclike_to_real
HasSum.summable
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Summable.hasSum
summable_f_nat
summable_f_nat πŸ“–mathematicalReal
Real.instLT
Real.instZero
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
f_nat
SummationFilter.unconditional
β€”Summable.of_norm_bounded
Real.instCompleteSpace
Nat.instAtLeastTwoHAddOfNat
Summable.comp_injective
instIsUniformAddGroupReal
Summable.mul_right
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
summable_pow_mul_jacobiThetaβ‚‚_term_bound
Nat.cast_injective
Int.instCharZero
mul_assoc
norm_mul
NormedDivisionRing.toNormMulClass
norm_pow
NormedDivisionRing.to_normOneClass
Int.cast_abs
Real.instIsStrictOrderedRing
Int.cast_natCast
Nat.abs_cast
Real.instIsOrderedRing
Real.abs_exp
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.exp_monotone
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
mul_nonneg
le_of_lt
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.pi_pos
Nat.cast_nonneg'
Real.instZeroLEOneClass
neg_le_iff_add_nonneg
neg_le_abs
LT.lt.le
two_pos
NeZero.charZero_one
RCLike.charZero_rclike
pow_nonneg
IsOrderedRing.toZeroLEOneClass
Summable.of_norm_bounded_eventually_nat
Summable.mul_left
mul_le_mul_iff_of_pos_right
IsOrderedRing.toMulPosMono
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.exp_pos
abs_pow
two_mul
Filter.mp_mem
Filter.eventually_ge_atTop
Filter.univ_mem'
pow_le_pow_leftβ‚€
abs_nonneg
LE.le.trans
abs_add_le
add_le_add
Eq.le
Nat.ceil_le

---

← Back to Index