Documentation Verification Report

OneVariable

📁 Source: Mathlib/NumberTheory/ModularForms/JacobiTheta/OneVariable.lean

Statistics

MetricCount
DefinitionsjacobiTheta
1
TheoremscontinuousAt_jacobiTheta, differentiableAt_jacobiTheta, hasSum_nat_jacobiTheta, isBigO_at_im_infty_jacobiTheta_sub_one, jacobiTheta_S_smul, jacobiTheta_T_sq_smul, jacobiTheta_eq_jacobiTheta₂, jacobiTheta_eq_tsum_nat, jacobiTheta_two_add, norm_exp_mul_sq_le, norm_jacobiTheta_sub_one_le
11
Total12

(root)

Definitions

NameCategoryTheorems
jacobiTheta 📖CompOp
11 mathmath: hasSum_nat_jacobiTheta, jacobiTheta_T_sq_smul, jacobiTheta_S_smul, norm_jacobiTheta_sub_one_le, isBigO_at_im_infty_jacobiTheta_sub_one, continuousAt_jacobiTheta, mdifferentiable_jacobiTheta, jacobiTheta_eq_jacobiTheta₂, jacobiTheta_eq_tsum_nat, jacobiTheta_two_add, differentiableAt_jacobiTheta

Theorems

NameKindAssumesProvesValidatesDepends On
continuousAt_jacobiTheta 📖mathematicalReal
Real.instLT
Real.instZero
Complex.im
ContinuousAt
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
jacobiTheta
DifferentiableAt.continuousAt
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
differentiableAt_jacobiTheta
differentiableAt_jacobiTheta 📖mathematicalReal
Real.instLT
Real.instZero
Complex.im
DifferentiableAt
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.addCommGroup
Complex.instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
jacobiTheta
jacobiTheta_eq_jacobiTheta₂
differentiableAt_jacobiTheta₂_snd
hasSum_nat_jacobiTheta 📖mathematicalReal
Real.instLT
Real.instZero
Complex.im
HasSum
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Complex.exp
Complex.instMul
Complex.ofReal
Real.pi
Complex.I
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.instAdd
Complex.instNatCast
Complex.instOne
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instSub
jacobiTheta
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
SummationFilter.unconditional
hasSum_jacobiTheta₂_term
HasSum.nat_add_neg
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
zero_add
MulZeroClass.mul_zero
Nat.instAtLeastTwoHAddOfNat
mul_div_cancel_right₀
EuclideanDomain.toMulDivCancelClass
two_ne_zero'
CharZero.NeZero.two
Complex.instCharZero
HasSum.div_const
Nat.cast_one
Nat.cast_add
Mathlib.Meta.NormNum.isInt_eq_true
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isInt_neg
add_sub_assoc
Complex.exp_zero
neg_sq
MulZeroClass.zero_mul
sq
Int.cast_zero
neg_zero
Nat.cast_zero
Int.cast_natCast
Int.cast_neg
Finset.sum_range_one
hasSum_nat_add_iff'
SeminormedAddCommGroup.toIsTopologicalAddGroup
isBigO_at_im_infty_jacobiTheta_sub_one 📖mathematicalAsymptotics.IsBigO
Complex
Real
Complex.instNorm
Real.norm
Filter.comap
Complex.im
Filter.atTop
Real.instPreorder
Complex.instSub
jacobiTheta
Complex.instOne
Real.exp
Real.instMul
Real.instNeg
Real.pi
Asymptotics.IsBigO_def
Asymptotics.IsBigOWith_def
instIsDirectedOrder
Real.instIsOrderedRing
Real.instArchimedean
Nat.instAtLeastTwoHAddOfNat
LE.le.trans
norm_jacobiTheta_sub_one_le
LT.lt.trans_le
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Real.norm_eq_abs
Real.abs_exp
neg_mul
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
div_le_div₀
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
le_of_lt
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
le_refl
mul_one
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
sub_le_sub_left
Real.exp_monotone
neg_le_neg
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.pi_pos
Real.exp_pos
jacobiTheta_S_smul 📖mathematicaljacobiTheta
UpperHalfPlane.coe
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
UpperHalfPlane
SemigroupAction.toSMul
Monoid.toSemigroup
Matrix.SpecialLinearGroup.monoid
MulAction.toSemigroupAction
UpperHalfPlane.SLAction
Ring.toIntAlgebra
Real
Real.instRing
ModularGroup.S
Complex
Complex.instMul
Complex.instPow
Complex.instNeg
Complex.I
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instOne
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
ne_of_gt
UpperHalfPlane.coe_im_pos
Complex.zero_im
Nat.instAtLeastTwoHAddOfNat
Complex.cpow_eq_zero_iff
not_and_or
mul_ne_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
neg_ne_zero
Complex.I_ne_zero
UpperHalfPlane.im_inv_neg_coe_pos
UpperHalfPlane.modular_S_smul
jacobiTheta_eq_jacobiTheta₂
Nat.cast_zero
Nat.cast_one
jacobiTheta₂_functional_equation
zero_pow
two_ne_zero
MulZeroClass.mul_zero
zero_div
Complex.exp_zero
mul_one
mul_one_div
div_self
one_mul
inv_neg
neg_div
one_div
jacobiTheta_T_sq_smul 📖mathematicaljacobiTheta
UpperHalfPlane.coe
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
UpperHalfPlane
SemigroupAction.toSMul
Monoid.toSemigroup
Matrix.SpecialLinearGroup.monoid
MulAction.toSemigroupAction
UpperHalfPlane.SLAction
Ring.toIntAlgebra
Real
Real.instRing
Monoid.toNatPow
ModularGroup.T
Nat.instAtLeastTwoHAddOfNat
UpperHalfPlane.modular_T_zpow_smul
Int.cast_ofNat
jacobiTheta_two_add
jacobiTheta_eq_jacobiTheta₂ 📖mathematicaljacobiTheta
jacobiTheta₂
Complex
Complex.instZero
tsum_congr
MulZeroClass.mul_zero
zero_add
jacobiTheta_eq_tsum_nat 📖mathematicalReal
Real.instLT
Real.instZero
Complex.im
jacobiTheta
Complex
Complex.instAdd
Complex.instOne
Complex.instMul
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
tsum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Complex.exp
Complex.ofReal
Real.pi
Complex.I
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
SummationFilter.unconditional
Nat.instAtLeastTwoHAddOfNat
HasSum.tsum_eq
Complex.instT2Space
SummationFilter.instNeBotUnconditional
hasSum_nat_jacobiTheta
mul_div_cancel₀
two_ne_zero'
CharZero.NeZero.two
Complex.instCharZero
add_sub_assoc
add_sub_cancel_left
jacobiTheta_two_add 📖mathematicaljacobiTheta
Complex
Complex.instAdd
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Nat.instAtLeastTwoHAddOfNat
jacobiTheta_eq_jacobiTheta₂
add_comm
jacobiTheta₂_add_right
norm_exp_mul_sq_le 📖mathematicalReal
Real.instLT
Real.instZero
Complex.im
Real.instLE
Norm.norm
Complex
Complex.instNorm
Complex.exp
Complex.instMul
Complex.ofReal
Real.pi
Complex.I
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.instIntCast
Real.instMonoid
Real.exp
Real.instMul
Real.instNeg
Real.exp_lt_one_iff
mul_neg_of_neg_of_pos
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
neg_lt_zero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.pi_pos
LE.le.trans
le_of_eq
Complex.norm_exp
Complex.ofReal_mul
Complex.ofReal_pow
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Complex.re_ofReal_mul
Complex.mul_I_re
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_one
sq_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
Int.instAddLeftMono
Real.exp_mul
Int.cast_pow
Real.rpow_intCast
zpow_natCast
Nat.cast_pow
Int.natAbs_sq
pow_le_pow_of_le_one
Real.instIsOrderedRing
LT.lt.le
Real.exp_pos
sq
norm_jacobiTheta_sub_one_le 📖mathematicalReal
Real.instLT
Real.instZero
Complex.im
Real.instLE
Norm.norm
Complex
Complex.instNorm
Complex.instSub
jacobiTheta
Complex.instOne
Real.instMul
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instSub
Real.instOne
Real.exp
Real.instNeg
Real.pi
Int.cast_add
Int.cast_one
norm_exp_mul_sq_le
pow_succ'
div_eq_mul_inv
hasSum_mul_left_iff
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Real.exp_ne_zero
hasSum_geometric_of_lt_one
LT.lt.le
Real.exp_pos
Real.exp_lt_one_iff
mul_neg_of_neg_of_pos
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
neg_lt_zero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.pi_pos
Summable.of_nonneg_of_le
norm_nonneg
HasSum.summable
LE.le.trans
norm_tsum_le_tsum_norm
LE.le.trans_eq
Summable.tsum_mono
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
SummationFilter.instNeBotUnconditional
HasSum.tsum_eq
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Nat.instAtLeastTwoHAddOfNat
sub_eq_iff_eq_add'
jacobiTheta_eq_tsum_nat
norm_mul
NormedDivisionRing.toNormMulClass
Complex.norm_two
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
le_of_lt
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
div_mul_comm
mul_comm

---

← Back to Index