map π | CompOp | 55 mathmath: slash_eq_zero_iff, ModularForm.mul_slash_SL2, ModularForm.smul_slash, SlashInvariantForm.slash_action_eq', ModularForm.mul_slash, OnePoint.isBoundedAt_iff_exists_SL2Z, SlashInvariantForm.quotientFunc_mk, ModularForm.SL_slash, ModularForm.prod_slash, ModularForm.prod_slash_sum_weights, OnePoint.isBoundedAt_iff_forall_SL2Z, SlashInvariantForm.quotientFunc_smul, OnePoint.isZeroAt_iff_exists_SL2Z, EisensteinSeries.E2_slash_action, EisensteinSeries.G2_slash_action, SlashInvariantForm.coe_translate, EisensteinSeries.D2_inv, OnePoint.isZeroAt_iff_forall_SL2Z, OnePoint.isBoundedAt_iff, OnePoint.IsZeroAt.smul_iff, slash_one, MDifferentiable.slash, CuspForm.coe_translate, neg_slash, EisensteinSeries.isBoundedAtImInfty_eisensteinSeries_SIF, ModularForm.slash_action_eq'_iff, zero_slash, UpperHalfPlane.petersson_slash_SL, ModularForm.SL_slash_def, slash_mul, sum_slash, OnePoint.IsBoundedAt.smul_iff, add_slash, SlashInvariantForm.slash_S_apply, ModularForm.prod_fintype_slash, ModularFormClass.bdd_at_infty_slash, ModularForm.slash_def, CuspFormClass.zero_at_infty_slash, ModularForm.is_invariant_one', ModularForm.is_invariant_const, ModularForm.SL_slash_apply, UpperHalfPlane.IsZeroAtImInfty.slash, ModularForm.coe_translate, EisensteinSeries.eisensteinSeries_slash_apply, OnePoint.isZeroAt_iff, SlashInvariantFormClass.slash_action_eq, SlashInvariantForm.slash_action_eqn, ModularForm.is_invariant_one, EisensteinSeries.D2_mul, UpperHalfPlane.IsBoundedAtImInfty.slash, ModularForm.SL_smul_slash, EisensteinSeries.isBoundedAtImInfty_eisensteinSeriesSIF, ModularForm.slash_apply, EisensteinSeries.G2_T_transform, UpperHalfPlane.petersson_slash
|