📁 Source: Mathlib/NumberTheory/MulChar/Duality.lean
card_eq_card_units_of_hasEnoughRootsOfUnity
exists_apply_ne_one_iff_exists_monoidHom
exists_apply_ne_one_of_hasEnoughRootsOfUnity
finite
mulEquiv_units
Nat.card
MulChar
CommSemiring.toCommMonoidWithZero
CommRing.toCommSemiring
Units
CommMonoid.toMonoid
Nat.card_congr
Mathlib.Tactic.Contrapose.contrapose₄
coe_toUnitHom
Units.ext_iff
equivToUnitHom_symm_coe
CommGroup.exists_apply_ne_one_of_hasEnoughRootsOfUnity
instFiniteUnits
IsUnit.unit_spec
Units.val_eq_one
map_nonunit
zero_ne_one
NeZero.one
Finite
Finite.of_equiv
instFiniteMonoidHomUnits
MulEquiv
hasMul
Units.instMul
CommGroup.monoidHom_mulEquiv_of_hasEnoughRootsOfUnity
---
← Back to Index