Documentation Verification Report

Niven

πŸ“ Source: Mathlib/NumberTheory/Niven.lean

Statistics

MetricCount
Definitions0
Theoremsexp_rat_mul_pi_mul_I_pow_two_mul_den, isAlgebraic_cos_rat_mul_pi, isAlgebraic_sin_rat_mul_pi, isAlgebraic_tan_rat_mul_pi, isIntegral_exp_neg_rat_mul_pi_mul_I, isIntegral_exp_rat_mul_pi_mul_I, isIntegral_two_mul_cos_rat_mul_pi, isIntegral_two_mul_sin_rat_mul_pi, exists_int_iff_exists_rat, ratCast_iff, isAlgebraic_cos_rat_mul_pi, isAlgebraic_sin_rat_mul_pi, isAlgebraic_tan_rat_mul_pi, isIntegral_two_mul_cos_rat_mul_pi, isIntegral_two_mul_sin_rat_mul_pi, irrational_cos_rat_mul_pi, isIntegral_two_mul_cos_rat_mul_pi, niven, niven_angle_div_pi_eq, niven_angle_eq, niven_fract_angle_div_pi_eq, niven_sin
22
Total22

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
exp_rat_mul_pi_mul_I_pow_two_mul_den πŸ“–mathematicalβ€”Complex
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
exp
instMul
instRatCast
ofReal
Real.pi
I
instOne
β€”Rat.num_div_den
exp_nat_mul
Nat.instAtLeastTwoHAddOfNat
Nat.cast_mul
Rat.cast_div
instCharZero
Rat.cast_intCast
Rat.cast_natCast
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
one_mul
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
Mathlib.Meta.NormNum.isNat_eq_false
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
exp_int_mul_two_pi_mul_I
isAlgebraic_cos_rat_mul_pi πŸ“–mathematicalβ€”IsAlgebraic
Complex
Int.instCommRing
instRing
Ring.toIntAlgebra
cos
instMul
instRatCast
ofReal
Real.pi
β€”IsAlgebraic.of_mul
NormMulClass.toNoZeroDivisors
Int.instNormMulClass
Nat.instAtLeastTwoHAddOfNat
eq_intCast
RingHom.instRingHomClass
Int.cast_ofNat
NormedDivisionRing.toNormMulClass
instNontrivial
instCharZero
isAlgebraic_algebraMap
Int.instNontrivial
IsIntegral.isAlgebraic
isIntegral_two_mul_cos_rat_mul_pi
isAlgebraic_sin_rat_mul_pi πŸ“–mathematicalβ€”IsAlgebraic
Complex
Int.instCommRing
instRing
Ring.toIntAlgebra
sin
instMul
instRatCast
ofReal
Real.pi
β€”IsAlgebraic.of_mul
NormMulClass.toNoZeroDivisors
Int.instNormMulClass
Nat.instAtLeastTwoHAddOfNat
eq_intCast
RingHom.instRingHomClass
Int.cast_ofNat
NormedDivisionRing.toNormMulClass
instNontrivial
instCharZero
isAlgebraic_algebraMap
Int.instNontrivial
IsIntegral.isAlgebraic
isIntegral_two_mul_sin_rat_mul_pi
isAlgebraic_tan_rat_mul_pi πŸ“–mathematicalβ€”IsAlgebraic
Complex
Int.instCommRing
instRing
Ring.toIntAlgebra
tan
instMul
instRatCast
ofReal
Real.pi
β€”IsAlgebraic.mul
NormMulClass.toNoZeroDivisors
Int.instNormMulClass
isAlgebraic_sin_rat_mul_pi
IsAlgebraic.inv
isAlgebraic_cos_rat_mul_pi
isIntegral_exp_neg_rat_mul_pi_mul_I πŸ“–mathematicalβ€”IsIntegral
Complex
Int.instCommRing
instRing
Ring.toIntAlgebra
exp
instMul
instNeg
instRatCast
ofReal
Real.pi
I
β€”neg_mul
Rat.cast_neg
isIntegral_exp_rat_mul_pi_mul_I
isIntegral_exp_rat_mul_pi_mul_I πŸ“–mathematicalβ€”IsIntegral
Complex
Int.instCommRing
instRing
Ring.toIntAlgebra
exp
instMul
instRatCast
ofReal
Real.pi
I
β€”IsIntegral.of_pow
Nat.instAtLeastTwoHAddOfNat
zero_lt_two
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
isIntegral_one
exp_rat_mul_pi_mul_I_pow_two_mul_den
isIntegral_two_mul_cos_rat_mul_pi πŸ“–mathematicalβ€”IsIntegral
Complex
Int.instCommRing
instRing
Ring.toIntAlgebra
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
cos
instRatCast
ofReal
Real.pi
β€”Nat.instAtLeastTwoHAddOfNat
cos.eq_1
mul_div_cancelβ‚€
two_ne_zero
CharZero.NeZero.two
instCharZero
IsIntegral.add
isIntegral_exp_rat_mul_pi_mul_I
isIntegral_exp_neg_rat_mul_pi_mul_I
isIntegral_two_mul_sin_rat_mul_pi πŸ“–mathematicalβ€”IsIntegral
Complex
Int.instCommRing
instRing
Ring.toIntAlgebra
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sin
instRatCast
ofReal
Real.pi
β€”Nat.instAtLeastTwoHAddOfNat
sin.eq_1
mul_div_cancelβ‚€
two_ne_zero
CharZero.NeZero.two
instCharZero
IsIntegral.mul
IsIntegral.sub
isIntegral_exp_neg_rat_mul_pi_mul_I
isIntegral_exp_rat_mul_pi_mul_I
isIntegral_int_I

IsIntegral

Theorems

NameKindAssumesProvesValidatesDepends On
exists_int_iff_exists_rat πŸ“–mathematicalIsIntegral
Int.instCommRing
DivisionRing.toRing
Ring.toIntAlgebra
DivisionRing.toRatCast
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”eq_intCast
RingHom.instRingHomClass
Rat.cast_intCast
IsIntegrallyClosed.algebraMap_eq_of_integral
Rat.isFractionRing
IsIntegralClosure.of_isIntegrallyClosed
Localization.isLocalization
UniqueFactorizationMonoid.instIsIntegrallyClosed
Int.instIsDomain
PrincipalIdealRing.to_uniqueFactorizationMonoid
EuclideanDomain.to_principal_ideal_domain
OreLocalization.instIsScalarTower
IsScalarTower.right
Algebra.IsIntegral.of_finite
AddMonoid.FG.to_moduleFinite_int
AddMonoid.fg_of_addGroup_fg
AddGroup.instFGInt
ratCast_iff
ratCast_iff πŸ“–mathematicalβ€”IsIntegral
Int.instCommRing
DivisionRing.toRing
Ring.toIntAlgebra
DivisionRing.toRatCast
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
β€”isIntegral_algebraMap_iff
AddCommGroup.intIsScalarTower
FaithfulSMul.algebraMap_injective
instFaithfulSMul_1
DivisionRing.isSimpleRing
IsSimpleRing.instNontrivial

Real

Theorems

NameKindAssumesProvesValidatesDepends On
isAlgebraic_cos_rat_mul_pi πŸ“–mathematicalβ€”IsAlgebraic
Real
Int.instCommRing
instRing
Ring.toIntAlgebra
cos
instMul
instRatCast
pi
β€”IsAlgebraic.of_mul
NormMulClass.toNoZeroDivisors
Int.instNormMulClass
Nat.instAtLeastTwoHAddOfNat
eq_intCast
RingHom.instRingHomClass
Int.cast_ofNat
NormedDivisionRing.toNormMulClass
instNontrivial
RCLike.charZero_rclike
isAlgebraic_algebraMap
Int.instNontrivial
IsIntegral.isAlgebraic
isIntegral_two_mul_cos_rat_mul_pi
isAlgebraic_sin_rat_mul_pi πŸ“–mathematicalβ€”IsAlgebraic
Real
Int.instCommRing
instRing
Ring.toIntAlgebra
sin
instMul
instRatCast
pi
β€”IsAlgebraic.of_mul
NormMulClass.toNoZeroDivisors
Int.instNormMulClass
Nat.instAtLeastTwoHAddOfNat
eq_intCast
RingHom.instRingHomClass
Int.cast_ofNat
NormedDivisionRing.toNormMulClass
instNontrivial
RCLike.charZero_rclike
isAlgebraic_algebraMap
Int.instNontrivial
IsIntegral.isAlgebraic
isIntegral_two_mul_sin_rat_mul_pi
isAlgebraic_tan_rat_mul_pi πŸ“–mathematicalβ€”IsAlgebraic
Real
Int.instCommRing
instRing
Ring.toIntAlgebra
tan
instMul
instRatCast
pi
β€”isAlgebraic_algebraMap_iff
AddCommGroup.intIsScalarTower
RCLike.ofReal_injective
Complex.ofReal_tan
Complex.ofReal_mul
isIntegral_two_mul_cos_rat_mul_pi πŸ“–mathematicalβ€”IsIntegral
Real
Int.instCommRing
instRing
Ring.toIntAlgebra
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
cos
instRatCast
pi
β€”Nat.instAtLeastTwoHAddOfNat
isIntegral_algebraMap_iff
AddCommGroup.intIsScalarTower
RCLike.ofReal_injective
Complex.ofReal_mul
Complex.ofReal_cos
isIntegral_two_mul_sin_rat_mul_pi πŸ“–mathematicalβ€”IsIntegral
Real
Int.instCommRing
instRing
Ring.toIntAlgebra
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sin
instRatCast
pi
β€”Nat.instAtLeastTwoHAddOfNat
isIntegral_algebraMap_iff
AddCommGroup.intIsScalarTower
RCLike.ofReal_injective
Complex.ofReal_mul
Complex.ofReal_sin

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
irrational_cos_rat_mul_pi πŸ“–mathematicalβ€”Irrational
Real.cos
Real
Real.instMul
Real.instRatCast
Real.pi
β€”niven_fract_angle_div_pi_eq
exists_rat_of_not_irrational
Mathlib.Meta.NormNum.isNat_lt_false
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Mathlib.Meta.NormNum.isNat_ofNat
Tactic.NormNum.isNat_ratDen
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Rat.den_intFract
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
Rat.instCharZero
Tactic.NormNum.nat_gcd_helper_1'
Set.mem_singleton_iff
isIntegral_two_mul_cos_rat_mul_pi πŸ“–mathematicalβ€”IsIntegral
Real
Int.instCommRing
Real.instRing
Ring.toIntAlgebra
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.cos
Real.instRatCast
Real.pi
β€”Real.isIntegral_two_mul_cos_rat_mul_pi
niven πŸ“–mathematicalReal
Real.instMul
Real.instRatCast
Real.pi
Real.cos
Set
Set.instMembership
Set.instInsert
Real.instNeg
Real.instOne
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instZero
Set.instSingletonSet
β€”Nat.instAtLeastTwoHAddOfNat
IsIntegral.exists_int_iff_exists_rat
RCLike.charZero_rclike
Real.isIntegral_two_mul_cos_rat_mul_pi
Rat.cast_mul
Rat.cast_ofNat
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.mul_eq
neg_eq_zero
sub_eq_zero_of_eq
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Ring.add_pf_add_gt
Finset.mem_Icc
Int.cast_neg
Int.cast_ofNat
Rat.cast_neg
Rat.cast_intCast
le_of_not_gt
Nat.cast_one
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.lt_of_eq_of_lt
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.neg_one_le_cos
Real.cos_le_one
Int.instCharZero
one_div
CharP.cast_eq_zero
CharP.ofCharZero
add_zero
neg_div_self
NeZero.charZero_one
Int.cast_one
neg_add_cancel
Int.cast_zero
zero_div
div_self
niven_angle_div_pi_eq πŸ“–mathematicalReal.cos
Real
Real.instMul
Real.instRatCast
Real.pi
Set
Set.instMembership
Set.Icc
Rat.instPreorder
Set.instInsert
Set.instSingletonSet
β€”RCLike.charZero_rclike
Function.Injective.mem_set_image
smul_left_injective
IsDomain.toIsCancelMulZero
Rat.isDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Real.pi_ne_zero
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
Nat.cast_zero
Real.instIsStrictOrderedRing
le_of_lt
Real.pi_pos
Nat.cast_one
Nat.instAtLeastTwoHAddOfNat
niven_angle_eq
MulZeroClass.zero_mul
one_mul
Set.image_congr
Rat.smul_def
one_div
Rat.cast_zero
Rat.cast_inv
Rat.cast_ofNat
Rat.cast_div
Rat.cast_one
niven_angle_eq πŸ“–mathematicalReal
Real.instMul
Real.instRatCast
Real.pi
Real.cos
Set
Set.instMembership
Set.Icc
Real.instPreorder
Real.instZero
Set.instInsert
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Set.instSingletonSet
β€”Nat.instAtLeastTwoHAddOfNat
niven
Real.cos_pi
Real.injOn_cos
le_of_lt
Real.pi_pos
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
Real.instIsDomain
Real.cos_pi_sub
Real.cos_pi_div_three
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
CancelDenoms.sub_subst
CancelDenoms.mul_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.pi_nonneg
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Real.cos_pi_div_two
Mathlib.Tactic.Linarith.mul_nonpos
Real.cos_zero
Mathlib.Meta.Positivity.nonneg_of_isNat
niven_fract_angle_div_pi_eq πŸ“–mathematicalReal.cos
Real
Real.instMul
Real.instRatCast
Real.pi
Set
Set.instMembership
Set.instInsert
Set.instSingletonSet
Int.fract
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
Rat.linearOrder
Rat.instFloorRing
β€”niven_angle_div_pi_eq
Int.fract.eq_1
Rat.cast_sub
RCLike.charZero_rclike
Rat.cast_intCast
Rat.cast_mul
Rat.cast_zpow
Rat.cast_neg
Rat.cast_one
sub_mul
Real.cos_sub_int_mul_pi
Rat.instIsStrictOrderedRing
le_of_lt
Int.fract_lt_one
niven_sin πŸ“–mathematicalReal
Real.instMul
Real.instRatCast
Real.pi
Real.sin
Set
Set.instMembership
Set.instInsert
Real.instNeg
Real.instOne
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instZero
Set.instSingletonSet
β€”Nat.instAtLeastTwoHAddOfNat
Real.cos_sub_pi_div_two
niven
Rat.cast_sub
RCLike.charZero_rclike
Rat.cast_div
Rat.cast_one
Rat.cast_ofNat
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.mul_one
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.lt_of_eq_of_lt
Mathlib.Tactic.Linarith.mul_eq
Real.instIsOrderedRing
neg_eq_zero
sub_eq_zero_of_eq
Mathlib.Meta.NormNum.isNat_lt_true
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNat_mul
CancelDenoms.mul_subst
Mathlib.Tactic.Linarith.mul_neg
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt

---

← Back to Index