Documentation Verification Report

Basic

πŸ“ Source: Mathlib/NumberTheory/NumberField/Basic.lean

Statistics

MetricCount
DefinitionsRingOfIntegers, algEquiv, basis, equiv, instAlgebra, instAlgebra_1, instCoeHead, instCommRing, instMulSemiringAction, mapAlgEquiv, mapAlgHom, mapRingEquiv, mapRingHom, restrict, restrict_addMonoidHom, restrict_monoidHom, val, inst_ringOfIntegersAlgebra, integralBasis, termπ“ž, ringOfIntegersEquiv
21
TheoremsinstNumberFieldRat, not_isField, injective, coe_eq_algebraMap, coe_eq_zero_iff, coe_injective, coe_mk, coe_ne_zero_iff, eq_iff, ext, ext_iff, extension_algebra_isIntegral, extension_isNoetherian, instCharZero, instCharZero_1, instFreeInt, instIsDedekindDomain, instIsDomain, instIsFractionRing, instIsIntegralClosure, instIsIntegralClosureInt, instIsIntegralInt, instIsIntegrallyClosed, instIsLocalizationAlgebraMapSubmonoidIntNonZeroDivisors, instIsNoetherianInt, instIsScalarTower, instIsScalarTower_1, instIsTorsionFree, instIsTorsionFree_1, instIsTorsionFree_2, instNontrivial, instSMulDistribClass, inst_isScalarTower, isIntegral, isIntegral_coe, ker_algebraMap_eq_bot, mapRingEquiv_apply, mapRingEquiv_symm_apply, mapRingHom_apply, map_mk, minpoly_coe, mk_add_mk, mk_eq_mk, mk_mul_mk, mk_one, mk_sub_mk, mk_zero, neg_mk, not_isField, rank, instFiniteDimensional, integralBasis_apply, integralBasis_repr_apply, isAlgebraic, mem_span_integralBasis, of_intermediateField, of_module_finite, of_ringEquiv, of_subfield, of_tower, to_charZero, to_finiteDimensional, numberField, ringOfIntegersEquiv_apply_coe, ringOfIntegersEquiv_symm_apply_coe
65
Total86

AdjoinRoot

Theorems

NameKindAssumesProvesValidatesDepends On
instNumberFieldRat πŸ“–mathematicalβ€”NumberField
AdjoinRoot
Rat.commRing
instField
Rat.instField
β€”charZero_of_injective_algebraMap
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Rat.instCharZero
PowerBasis.finite
Irreducible.ne_zero
Fact.out

Int

Theorems

NameKindAssumesProvesValidatesDepends On
not_isField πŸ“–mathematicalβ€”IsField
instSemiring
β€”not_even_one
Nat.instAtLeastTwoHAddOfNat
two_mul
IsField.mul_inv_cancel
two_ne_zero

NumberField

Definitions

NameCategoryTheorems
RingOfIntegers πŸ“–CompOp
347 mathmath: IsPrimitiveRoot.subOneIntegralPowerBasis_gen_prime, IsPrimitiveRoot.toInteger_isPrimitiveRoot, IsCyclotomicExtension.Rat.Three.eta_sq_add_eta_add_one, Ideal.ramificationIdx_primesOverSpanEquivMonicFactorsMod_symm_apply', basisMatrix_eq_embeddingsMatrixReindex, mixedEmbedding.fundamentalCone.expMapBasis_apply', mixedEmbedding.fundamentalDomain_integerLattice, IsCyclotomicExtension.Rat.five_pid, IsPrimitiveRoot.not_exists_int_prime_dvd_sub_of_prime_ne_two', Rat.RingOfIntegers.isUnit_iff, IsCyclotomicExtension.Rat.ramificationIdxIn_eq_of_prime, IsCyclotomicExtension.Rat.inertiaDeg_eq_of_prime_pow, RingOfIntegers.inst_isScalarTower, mixedEmbedding.fundamentalCone.preimageOfMemIntegerSet_mixedEmbedding, Ideal.inertiaDeg_primesOverSpanEquivMonicFactorsMod_symm_apply, canonicalEmbedding.mem_span_latticeBasis, integralBasis_apply, IsPrimitiveRoot.zeta_sub_one_prime_of_two_pow, Units.logEmbedding_fundSystem, prod_nonarchAbsVal_eq, isCoprime_differentIdeal_of_isCoprime_discr, Units.instNonemptySubtypeUnitsRingOfIntegersMemSubgroupTorsion, FinitePlace.mk_apply, instFreeIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule, canonicalEmbedding.latticeBasis_apply, IsCMField.unitsComplexConj_torsion, RingOfIntegers.HeightOneSpectrum.one_lt_absNorm_nnreal, hermiteTheorem.minkowskiBound_lt_boundOfDiscBdd, FermatLastTheoremForThreeGen.Solution.lambda_sq_not_dvd_a_add_eta_sq_mul_b, Ideal.inertiaDeg_primesOverSpanEquivMonicFactorsMod_symm_apply', RingOfIntegers.instSMulDistribClass, IsCyclotomicExtension.Rat.ncard_primesOver_of_prime_pow, RingOfIntegers.not_isField, FermatLastTheoremForThreeGen.Solution.lambda_dvd_a_add_eta_sq_mul_b, mixedEmbedding.fundamentalCone.integerSetEquivNorm_apply_fst, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_apply, mixedEmbedding.norm_unit_smul, FinitePlace.norm_def', IsPrimitiveRoot.norm_toInteger_sub_one_of_eq_two_pow, mixedEmbedding.mem_idealLattice, mixedEmbedding.fundamentalCone.completeBasis_apply_of_ne, Units.regOfFamily_eq_det, FinitePlace.embedding_apply, IsCyclotomicExtension.Rat.ramificationIdxIn_eq, RingOfIntegers.instIsFractionRing, instFiniteQuotientRingOfIntegersIdealOfNumberFieldOfIsMaximal, IsPrimitiveRoot.zeta_sub_one_prime_of_ne_two, IsPrimitiveRoot.subOneIntegralPowerBasis_gen, IsCyclotomicExtension.Rat.Three.coe_eta, IsCyclotomicExtension.Rat.ramificationIdx_span_zeta_sub_one', RingOfIntegers.exponent_eq_sInf, Units.pos_at_place, RingOfIntegers.instIsTorsionFree_1, FermatLastTheoremForThreeGen.lambda_pow_four_dvd_c_cube, mixedEmbedding.fundamentalCone.card_isPrincipal_dvd_norm_le, FermatLastTheoremForThreeGen.Solution'.H, RingOfIntegers.withValEquiv_symm_apply, FermatLastTheoremForThreeGen.Solution.hab, Units.coe_mul, FermatLastTheoremForThreeGen.Solution.a_add_eta_mul_b, mixedEmbedding.fundamentalCone.card_isPrincipal_norm_eq_mul_torsion, IsPrimitiveRoot.norm_toInteger_sub_one_of_eq_two, FinitePlace.prod_eq_inv_abs_norm_int, IsPrimitiveRoot.not_exists_int_prime_dvd_sub_of_prime_ne_two, IsPrimitiveRoot.integralPowerBasisOfPrimePow_gen, FinitePlace.norm_embedding_eq, RingOfIntegers.instIsDedekindDomainWithVal, IsCyclotomicExtension.Rat.ramificationIdx_eq_of_prime_pow, mixedEmbedding.fundamentalCone.integerSetQuotEquivAssociates_apply, Rat.IsIntegralClosure.intEquiv_apply_eq_ringOfIntegersEquiv, IsPrimitiveRoot.prime_norm_toInteger_sub_one_of_prime_pow_ne_two, IsCyclotomicExtension.Rat.ramificationIdx_eq_of_prime, IsPrimitiveRoot.adjoinEquivRingOfIntegers_symm_apply, instIsGaloisGroupIntRingOfIntegersOfRat, mixedEmbedding.fundamentalCone.integerSetEquiv_apply_fst, IsDedekindDomain.HeightOneSpectrum.equivHeightOneSpectrum_symm_apply, Units.map_complexEmbedding_torsion, RingOfIntegers.instIsTorsionFree_2, Units.span_basisOfIsMaxRank, IsPrimitiveRoot.subOneIntegralPowerBasis'_gen_prime, Units.logEmbeddingQuot_apply, canonicalEmbedding.integralBasis_repr_apply, Units.basisOfIsMaxRank_apply, RingOfIntegers.isUnit_norm_of_isGalois, Units.regulator_eq_det, IsCyclotomicExtension.Rat.p_mem_span_zeta_sub_one, RingOfIntegers.extension_algebra_isIntegral, mixedEmbedding.fundamentalDomain_idealLattice, mixedEmbedding.fundamentalCone.integerSetTorsionSMul_smul_coe, IsCyclotomicExtension.Rat.inertiaDegIn_of_not_dvd, Units.coe_coe, Algebra.coe_norm_int, Units.instFiniteIntAdditiveUnitsRingOfIntegers, Units.finrank_mul_regOfFamily_eq_det, mixedEmbedding.mem_span_fractionalIdealLatticeBasis, IsPrimitiveRoot.adjoinEquivRingOfIntegers_apply, det_basisOfFractionalIdeal_eq_absNorm, RingOfIntegers.coe_eq_zero_iff, Units.complexEmbedding_injective, RingOfIntegers.instIsNoetherianInt, Units.norm, RingOfIntegers.isPrincipalIdealRing_of_abs_discr_lt, IsCyclotomicExtension.Rat.inertiaDegIn_eq_of_prime_pow, IsPrimitiveRoot.norm_toInteger_pow_sub_one_of_two, RingOfIntegers.instIsLocalizationAlgebraMapSubmonoidIntNonZeroDivisors, mixedEmbedding.span_idealLatticeBasis, IsPrimitiveRoot.integralPowerBasis'_gen, IsCMField.coe_ringOfIntegersComplexConj, Units.fundSystem_mk, IsPrimitiveRoot.prime_norm_toInteger_sub_one_of_prime_ne_two', FinitePlace.maximalIdeal_injective, IsCMField.indexRealUnits_mul_eq, Units.dirichletUnitTheorem.map_logEmbedding_sup_torsion, FinitePlace.norm_lt_one_iff_mem, mixedEmbedding.unit_smul_eq_iff_mul_eq, mixedEmbedding.fundamentalCone.unit_smul_mem_iff_mem_torsion, IsPrimitiveRoot.subOneIntegralPowerBasis'_gen, RingOfIntegers.norm_algebraMap, IsPrimitiveRoot.power_basis_int'_dim, mixedEmbedding.fundamentalCone.integerSetTorsionSMul_stabilizer, Units.rank_modTorsion, RingOfIntegers.ker_algebraMap_eq_bot, mixedEmbedding.mem_span_latticeBasis, Units.dirichletUnitTheorem.sum_logEmbedding_component, mixedEmbedding.fundamentalCone.existsUnique_preimage_of_mem_integerSet, FermatLastTheoremForThreeGen.Solution'.ha, IsPrimitiveRoot.finite_quotient_span_sub_one', RingOfIntegers.instNontrivial, IsPrimitiveRoot.finite_quotient_span_sub_one, mixedEmbedding.covolume_idealLattice, FermatLastTheoremForThreeGen.a_cube_b_cube_congr_one_or_neg_one, RingOfIntegers.instIsDedekindDomain, classNumber_eq_one_iff, IsCMField.unitsMulComplexConjInv_apply_torsion, Ideal.liesOver_primesOverSpanEquivMonicFactorsMod_symm, RingOfIntegers.not_dvd_exponent_iff, IsPrimitiveRoot.integralPowerBasisOfPrimePow_dim, mixedEmbedding.fundamentalCone.quotIntNorm_apply, Units.mem_torsion, discr_eq_discr, mixedEmbedding.fundamentalCone.integerSetToAssociates_apply, Units.regOfFamily_div_regulator, mixedEmbedding.fundamentalCone.exists_unit_smul_mem, IsCyclotomicExtension.ring_of_integers', IsCyclotomicExtension.Rat.Three.eta_sq, Units.coe_neg_one, IsCyclotomicExtension.ringOfIntegers, IsCyclotomicExtension.Rat.inertiaDeg_span_zeta_sub_one, mixedEmbedding.det_basisOfFractionalIdeal_eq_norm, mixedEmbedding.logMap_eq_logEmbedding, RingOfIntegers.norm_norm, IsCMField.closure_realFundSystem_sup_torsion, Ideal.tendsto_norm_le_div_atTopβ‚€, isFinitePlace_iff, Units.instIsCyclicSubtypeUnitsRingOfIntegersMemSubgroupTorsion, IsCyclotomicExtension.Rat.inertiaDeg_eq, RingOfIntegers.rank, integralBasis_repr_apply, IsPrimitiveRoot.finite_quotient_toInteger_sub_one, RingOfIntegers.HeightOneSpectrum.adicAbv_def, IsCyclotomicExtension.Rat.inertiaDegIn_eq_of_not_dvd, Units.dirichletUnitTheorem.mult_log_place_eq_zero, Units.closure_fundSystem_sup_torsion_eq_top, FinitePlace.coe_apply, IsPrimitiveRoot.norm_toInteger_sub_one_eq_one, IsCyclotomicExtension.Rat.eq_span_zeta_sub_one_of_liesOver', IsCyclotomicExtension.Rat.inertiaDeg_span_zeta_sub_one', RingOfIntegers.isUnit_norm, Units.torsion_eq_one_or_neg_one_of_odd_finrank, mixedEmbedding.span_latticeBasis, FinitePlace.norm_def_int, RingOfIntegers.instIsTorsionFree, Units.dirichletUnitTheorem.logEmbedding_eq_zero_iff, IsCyclotomicExtension.Rat.isPrime_span_zeta_sub_one', IsCyclotomicExtension.Rat.ncard_primesOver_of_prime, IsCyclotomicExtension.Rat.liesOver_span_zeta_sub_one, RingOfIntegers.withValEquiv_apply, mixedEmbedding.exists_ne_zero_mem_ideal_lt, RingOfIntegers.coe_injective, RingOfIntegers.instFreeInt, mixedEmbedding.exists_ne_zero_mem_ideal_of_norm_le, IsCMField.unitsMulComplexConjInv_ker, RingOfIntegers.instIsDomain, RingOfIntegers.isIntegral_coe, IsCyclotomicExtension.Rat.eq_span_zeta_sub_one_of_liesOver, IsCyclotomicExtension.Rat.Three.Units.mem, Units.complexEmbedding_apply, fractionalIdeal_rank, RingOfIntegers.instCharZero, mixedEmbedding.fundamentalCone.mixedEmbedding_preimageOfMemIntegerSet, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_symm_apply, RingOfIntegers.mapRingHom_apply, RingOfIntegers.coe_norm, Units.coe_pow, mixedEmbedding.volume_fundamentalDomain_fractionalIdealLatticeBasis, IsCyclotomicExtension.Rat.Three.lambda_dvd_or_dvd_sub_one_or_dvd_add_one, IsCMField.unitsMulComplexConjInv_apply, Units.abs_det_eq_abs_det, IsPrimitiveRoot.prime_norm_toInteger_sub_one_of_prime_ne_two, instIsGaloisGroupRingOfIntegersOfNumberField, FermatLastTheoremForThreeGen.Solution'.hcdvd, inverse_basisMatrix_mulVec_eq_repr, IsPrimitiveRoot.toInteger_sub_one_dvd_prime, RingOfIntegers.instIsIntegralClosureInt, IsCMField.ringOfIntegersComplexConj_eq_self_iff, RingOfIntegers.ZModXQuotSpanEquivQuotSpan_mk_apply, Units.coe_injective, mixedEmbedding.fundamentalCone.integerSetToAssociates_eq_iff, mixedEmbedding.logMap_unit_smul, Units.coe_one, IsCMField.mem_realUnits_iff, IsPrimitiveRoot.norm_toInteger_sub_one_of_prime_ne_two, canonicalEmbedding.mem_rat_span_latticeBasis, mixedEmbedding.unitSMul_smul, RingOfIntegers.extension_isNoetherian, IsCMField.unitsComplexConj_eq_self_iff, IsPrimitiveRoot.toInteger_sub_one_dvd_prime', FermatLastTheoremForThreeGen.Solution'.hb, IsCyclotomicExtension.Rat.ramificationIdxIn_eq_of_not_dvd, exists_ideal_in_class_of_norm_le, IsPrimitiveRoot.card_quotient_toInteger_sub_one, IsCyclotomicExtension.Rat.ramificationIdxIn_eq_of_prime_pow, Rat.ringOfIntegersEquiv_apply_coe, Units.rootsOfUnity_eq_torsion, Ideal.tendsto_norm_le_div_atTop, mixedEmbedding.exists_ne_zero_mem_ideal_lt', IsCyclotomicExtension.Rat.inertiaDegIn_eq, RingOfIntegers.coe_eq_algebraMap, mem_span_integralBasis, RingOfIntegers.mapRingEquiv_apply, RingOfIntegers.neg_mk, IsCyclotomicExtension.Rat.isPrime_span_zeta_sub_one, mixedEmbedding.fundamentalCone.idealSetEquiv_symm_apply, IsCyclotomicExtension.Rat.three_pid, IsPrimitiveRoot.not_exists_int_prime_dvd_sub_of_prime_pow_ne_two, Units.dirichletUnitTheorem.logEmbedding_component, Units.coe_zpow, mem_span_basisOfFractionalIdeal, Units.logEmbeddingQuot_injective, mixedEmbedding.latticeBasis_apply, mixedEmbedding.unit_smul_eq_zero, Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply_eq_span, RingOfIntegers.exponent_eq_one_iff, FinitePlace.norm_eq_one_iff_notMem, RingOfIntegers.instIsIntegrallyClosed, mixedEmbedding.latticeBasis_repr_apply, RingOfIntegers.isIntegral, IsPrimitiveRoot.norm_toInteger_pow_sub_one_of_prime_pow_ne_two, IsCyclotomicExtension.Rat.map_eq_span_zeta_sub_one_pow, IsPrimitiveRoot.IsCyclotomicExtension.ringOfIntegersOfPrimePow, IsPrimitiveRoot.integralPowerBasis_dim, IsCyclotomicExtension.Rat.ramificationIdx_of_not_dvd, isUnit_iff_norm, mixedEmbedding.fractionalIdealLatticeBasis_apply, IsPrimitiveRoot.subOneIntegralPowerBasisOfPrimePow_gen, IsCyclotomicExtension.Rat.ramificationIdx_eq_of_not_dvd, IsCyclotomicExtension.Rat.adjoin_singleton_eq_top, RingOfIntegers.instIsScalarTower, Units.instFGUnitsRingOfIntegers, Ideal.ramificationIdx_primesOverSpanEquivMonicFactorsMod_symm_apply, RingOfIntegers.instIsScalarTower_1, toNNReal_valued_eq_adicAbv, mixedEmbedding.fundamentalCone.preimage_of_IdealSetMap, RingOfIntegers.instIsIntegralInt, FermatLastTheoremForThreeGen.Solution'.coprime, IsCMField.indexRealUnits_eq_two_iff, Rat.ringOfIntegersEquiv_symm_apply_coe, IsCMField.RingOfIntegers.complexConj_eq_self_iff, IsPrimitiveRoot.integralPowerBasis_gen, IsCyclotomicExtension.Rat.ramificationIdx_eq, mixedEmbedding.volume_fundamentalDomain_latticeBasis, Units.logEmbeddingEquiv_apply, IsCyclotomicExtension.Rat.associated_norm_zeta_sub_one, Units.isMaxRank_iff_closure_finiteIndex, Units.exist_unique_eq_mul_prod, basisOfFractionalIdeal_apply, IsCyclotomicExtension.Rat.absNorm_span_zeta_sub_one, Units.rootsOfUnity_eq_one, RingOfIntegers.algebraMap_norm_algebraMap, FinitePlace.isFinitePlace, instFiniteIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule, Units.finiteIndex_iff_sup_torsion_finiteIndex, RingOfIntegers.map_mk, IsCyclotomicExtension.Rat.inertiaDeg_of_not_dvd, exists_ne_zero_mem_ideal_of_norm_le_mul_sqrt_discr, mixedEmbedding.fundamentalCone.mem_idealSet, IsPrimitiveRoot.zeta_sub_one_prime, Ideal.tendsto_norm_le_and_mk_eq_div_atTop, mixedEmbedding.fundamentalCone.integerSetToAssociates_surjective, Units.instFiniteIntAdditiveQuotientUnitsRingOfIntegersSubgroupTorsion, mixedEmbedding.fundamentalCone.idealSetEquiv_apply, canonicalEmbedding_eq_basisMatrix_mulVec, IsCyclotomicExtension.Rat.ramificationIdxIn_of_not_dvd, coe_discr, FermatLastTheoremForThreeGen.a_cube_add_b_cube_eq_mul, Units.finrank_mul_regulator_eq_det, IsDedekindDomain.HeightOneSpectrum.embedding_mul_absNorm, IsCyclotomicExtension.Rat.Three.cube_sub_one_eq_mul, instIsLocalizedModuleIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmoduleValFractionalIdealNonZeroDivisorsRestrictScalarsSubtype, mixedEmbedding.disjoint_span_commMap_ker, FinitePlace.norm_le_one, Units.sum_mult_mul_log, Algebra.coe_trace_int, IsCyclotomicExtension.Rat.inertiaDeg_eq_of_not_dvd, FermatLastTheoremForThreeGen.lambda_sq_dvd_c, RingOfIntegers.coe_algebraMap_norm, Units.regulator_eq_det', RingOfIntegers.minpoly_coe, IsCyclotomicExtension.Rat.ramificationIdxIn_of_prime, FermatLastTheoremForThreeGen.Solution.lambda_sq_not_dvd_a_add_eta_mul_b, Units.dirichletUnitTheorem.logEmbedding_ker, IsCyclotomicExtension.Rat.inertiaDeg_eq_of_prime, RingOfIntegers.HeightOneSpectrum.one_lt_absNorm, Units.dirichletUnitTheorem.exists_unit, IsCMField.map_unitsMulComplexConjInv_torsion, Units.complexEmbedding_inj, RingOfIntegers.algebraMap.injective, RingOfIntegers.instIsIntegralClosure, IsPrimitiveRoot.norm_toInteger_sub_one_of_prime_ne_two', mixedEmbedding.norm_unit, Units.regOfFamily_eq_det', IsCyclotomicExtension.Rat.inertiaDegIn_eq_of_prime, RingOfIntegers.mapRingEquiv_symm_apply, FermatLastTheoremForThreeGen.Solution'.multiplicity_lambda_c_finite, IsCMField.complexConj_torsion, RingOfIntegers.instCharZero_1, FermatLastTheoremForThreeGen.ex_cube_add_cube_eq_and_isCoprime_and_not_dvd_and_dvd, RingOfIntegers.dvd_norm, IsPrimitiveRoot.subOneIntegralPowerBasisOfPrimePow_gen_prime, Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply, FermatLastTheoremForThreeGen.Solution.lambda_dvd_a_add_eta_mul_b, IsCyclotomicExtension.Rat.ramificationIdx_span_zeta_sub_one, house.basis_repr_norm_le_const_mul_house, IsCMField.Units.complexConj_eq_self_iff, mixedEmbedding.fundamentalCone.expMap_basis_of_ne, IsCMField.index_unitsMulComplexConjInv_range_dvd, FinitePlace.norm_def, Rat.ringOfIntegersWithValEquiv_apply, IsPrimitiveRoot.norm_toInteger_pow_sub_one_of_prime_ne_two, Units.instFreeIntAdditiveQuotientUnitsRingOfIntegersSubgroupTorsion, mixedEmbedding.mem_rat_span_latticeBasis, IsPrimitiveRoot.toInteger_cube_eq_one, IsPrimitiveRoot.zeta_sub_one_prime', mixedEmbedding.fundamentalCone.intNorm_idealSetEquiv_apply, IsPrimitiveRoot.toInteger_sub_one_not_dvd_two, IsCyclotomicExtension.Rat.Three.lambda_dvd_mul_sub_one_mul_sub_eta_add_one, FermatLastTheoremForThreeGen.lambda_sq_dvd_or_dvd_or_dvd
inst_ringOfIntegersAlgebra πŸ“–CompOp
16 mathmath: RingOfIntegers.inst_isScalarTower, isCoprime_differentIdeal_of_isCoprime_discr, RingOfIntegers.instIsTorsionFree_1, RingOfIntegers.extension_algebra_isIntegral, IsCMField.coe_ringOfIntegersComplexConj, RingOfIntegers.norm_algebraMap, RingOfIntegers.ker_algebraMap_eq_bot, instIsGaloisGroupRingOfIntegersOfNumberField, IsCMField.ringOfIntegersComplexConj_eq_self_iff, IsCMField.mem_realUnits_iff, RingOfIntegers.extension_isNoetherian, RingOfIntegers.instIsScalarTower_1, RingOfIntegers.algebraMap_norm_algebraMap, RingOfIntegers.coe_algebraMap_norm, RingOfIntegers.algebraMap.injective, RingOfIntegers.dvd_norm
integralBasis πŸ“–CompOp
13 mathmath: basisMatrix_eq_embeddingsMatrixReindex, integralBasis_apply, canonicalEmbedding.latticeBasis_apply, canonicalEmbedding.integralBasis_repr_apply, det_basisOfFractionalIdeal_eq_absNorm, integralBasis_repr_apply, inverse_basisMatrix_mulVec_eq_repr, mem_span_integralBasis, mixedEmbedding.latticeBasis_apply, mixedEmbedding.latticeBasis_repr_apply, canonicalEmbedding_eq_basisMatrix_mulVec, coe_discr, house.basis_repr_norm_le_const_mul_house
termπ“ž πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instFiniteDimensional πŸ“–mathematicalβ€”FiniteDimensional
Field.toDivisionRing
Ring.toAddCommGroup
DivisionRing.toRing
Algebra.toModule
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”Module.Finite.of_restrictScalars_finite
to_charZero
IsScalarTower.rat
to_finiteDimensional
integralBasis_apply πŸ“–mathematicalβ€”DFunLike.coe
Module.Basis
Module.Free.ChooseBasisIndex
RingOfIntegers
Int.instSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
RingOfIntegers.instCommRing
AddCommGroup.toIntModule
Ring.toAddCommGroup
CommRing.toRing
RingOfIntegers.instFreeInt
Rat.semiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
Field.toDivisionRing
to_charZero
Module.Basis.instFunLike
integralBasis
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Algebra.id
Semifield.toCommSemiring
RingOfIntegers.basis
β€”RingOfIntegers.instFreeInt
Module.Basis.localizationLocalization_apply
Rat.isFractionRing
to_charZero
AddCommGroup.intIsScalarTower
RingOfIntegers.instIsLocalizationAlgebraMapSubmonoidIntNonZeroDivisors
integralBasis_repr_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
Module.Free.ChooseBasisIndex
RingOfIntegers
Int.instSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
RingOfIntegers.instCommRing
AddCommGroup.toIntModule
Ring.toAddCommGroup
CommRing.toRing
RingOfIntegers.instFreeInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Rat.semiring
Finsupp.instFunLike
LinearEquiv
RingHom.id
RingHomInvPair.ids
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Finsupp.instAddCommMonoid
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
Field.toDivisionRing
to_charZero
Finsupp.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.repr
integralBasis
RingHom
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Algebra.id
Semifield.toCommSemiring
Int.instCommSemiring
Ring.toIntAlgebra
Rat.instDivisionRing
RingOfIntegers.basis
β€”RingOfIntegers.instFreeInt
Module.Basis.localizationLocalization_repr_algebraMap
Rat.isFractionRing
to_charZero
AddCommGroup.intIsScalarTower
RingOfIntegers.instIsLocalizationAlgebraMapSubmonoidIntNonZeroDivisors
isAlgebraic πŸ“–mathematicalβ€”Algebra.IsAlgebraic
Rat.commRing
DivisionRing.toRing
Field.toDivisionRing
DivisionRing.toRatAlgebra
to_charZero
β€”Algebra.IsAlgebraic.of_finite
Rat.nontrivial
to_charZero
to_finiteDimensional
mem_span_integralBasis πŸ“–mathematicalβ€”Submodule
Int.instSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AddCommGroup.toIntModule
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.range
Module.Free.ChooseBasisIndex
RingOfIntegers
RingOfIntegers.instCommRing
CommRing.toRing
RingOfIntegers.instFreeInt
DFunLike.coe
Module.Basis
Rat.semiring
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
to_charZero
Module.Basis.instFunLike
integralBasis
Subring
Subring.instSetLike
RingHom.range
algebraMap
CommRing.toCommSemiring
RingOfIntegers.instAlgebra_1
Algebra.id
Semifield.toCommSemiring
β€”RingOfIntegers.instFreeInt
to_charZero
RingHomSurjective.ids
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Module.Basis.localizationLocalization_span
Rat.isFractionRing
RingOfIntegers.instIsLocalizationAlgebraMapSubmonoidIntNonZeroDivisors
of_intermediateField πŸ“–mathematicalβ€”NumberField
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
β€”of_module_finite
IsScalarTower.left
IntermediateField.finiteDimensional_left
instFiniteDimensional
of_module_finite πŸ“–mathematicalβ€”NumberFieldβ€”charZero_of_injective_algebraMap
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
to_charZero
Module.Finite.trans
IsScalarTower.rat
to_finiteDimensional
of_ringEquiv πŸ“–mathematicalβ€”NumberFieldβ€”CharZero.of_addMonoidHom
to_charZero
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingEquiv.injective
LinearEquiv.finiteDimensional
RingHomInvPair.ids
RingEquivClass.toLinearEquivClassRat
to_finiteDimensional
of_subfield πŸ“–mathematicalβ€”NumberField
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
Subfield.toField
β€”SubsemiringClass.instCharZero
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
to_charZero
FiniteDimensional.left
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
instIsDomain
GroupWithZero.toNoZeroSMulDivisors
isNoetherian_of_isNoetherianRing_of_finite
IsDedekindRing.toIsNoetherian
IsDedekindDomain.toIsDedekindRing
IsPrincipalIdealRing.isDedekindDomain
Rat.isDomain
EuclideanDomain.to_principal_ideal_domain
to_finiteDimensional
IsScalarTower.rat
IsLocalRing.toNontrivial
Field.instIsLocalRing
of_tower πŸ“–mathematicalβ€”NumberFieldβ€”of_module_finite
Module.Finite.left
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
instIsDomain
GroupWithZero.toNoZeroSMulDivisors
isNoetherian_of_isNoetherianRing_of_finite
IsDedekindRing.toIsNoetherian
IsDedekindDomain.toIsDedekindRing
IsPrincipalIdealRing.isDedekindDomain
EuclideanDomain.to_principal_ideal_domain
instFiniteDimensional
IsLocalRing.toNontrivial
Field.instIsLocalRing
to_charZero πŸ“–mathematicalβ€”CharZero
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”β€”
to_finiteDimensional πŸ“–mathematicalβ€”FiniteDimensional
Rat.instDivisionRing
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
to_charZero
β€”β€”

NumberField.RingOfIntegers

Definitions

NameCategoryTheorems
algEquiv πŸ“–CompOpβ€”
basis πŸ“–CompOp
2 mathmath: NumberField.integralBasis_apply, NumberField.integralBasis_repr_apply
equiv πŸ“–CompOpβ€”
instAlgebra πŸ“–CompOp
1 mathmath: instIsTorsionFree
instAlgebra_1 πŸ“–CompOp
97 mathmath: NumberField.mixedEmbedding.fundamentalCone.expMapBasis_apply', NumberField.canonicalEmbedding.mem_span_latticeBasis, NumberField.integralBasis_apply, NumberField.prod_nonarchAbsVal_eq, NumberField.FinitePlace.mk_apply, NumberField.instFreeIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule, NumberField.hermiteTheorem.minkowskiBound_lt_boundOfDiscBdd, instSMulDistribClass, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_apply, NumberField.FinitePlace.norm_def', NumberField.mixedEmbedding.mem_idealLattice, NumberField.mixedEmbedding.fundamentalCone.completeBasis_apply_of_ne, NumberField.Units.regOfFamily_eq_det, NumberField.FinitePlace.embedding_apply, instIsFractionRing, NumberField.Units.pos_at_place, withValEquiv_symm_apply, NumberField.Units.coe_mul, NumberField.FinitePlace.norm_embedding_eq, Rat.IsIntegralClosure.intEquiv_apply_eq_ringOfIntegersEquiv, IsPrimitiveRoot.adjoinEquivRingOfIntegers_symm_apply, IsDedekindDomain.HeightOneSpectrum.equivHeightOneSpectrum_symm_apply, instIsTorsionFree_2, NumberField.Units.regulator_eq_det, NumberField.mixedEmbedding.fundamentalDomain_idealLattice, NumberField.Units.coe_coe, NumberField.Units.finrank_mul_regOfFamily_eq_det, NumberField.mixedEmbedding.mem_span_fractionalIdealLatticeBasis, IsPrimitiveRoot.adjoinEquivRingOfIntegers_apply, NumberField.det_basisOfFractionalIdeal_eq_absNorm, coe_eq_zero_iff, NumberField.Units.norm, instIsLocalizationAlgebraMapSubmonoidIntNonZeroDivisors, NumberField.mixedEmbedding.span_idealLatticeBasis, NumberField.FinitePlace.norm_lt_one_iff_mem, NumberField.Units.dirichletUnitTheorem.sum_logEmbedding_component, NumberField.mixedEmbedding.covolume_idealLattice, NumberField.Units.mem_torsion, NumberField.Units.coe_neg_one, NumberField.mixedEmbedding.det_basisOfFractionalIdeal_eq_norm, NumberField.mixedEmbedding.logMap_eq_logEmbedding, NumberField.isFinitePlace_iff, NumberField.integralBasis_repr_apply, HeightOneSpectrum.adicAbv_def, NumberField.Units.dirichletUnitTheorem.mult_log_place_eq_zero, NumberField.FinitePlace.coe_apply, NumberField.Units.dirichletUnitTheorem.log_le_of_logEmbedding_le, NumberField.FinitePlace.norm_def_int, withValEquiv_apply, NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_lt, coe_injective, NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_of_norm_le, isIntegral_coe, NumberField.Units.complexEmbedding_apply, NumberField.fractionalIdeal_rank, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_symm_apply, NumberField.Units.coe_pow, NumberField.mixedEmbedding.volume_fundamentalDomain_fractionalIdealLatticeBasis, NumberField.Units.abs_det_eq_abs_det, NumberField.inverse_basisMatrix_mulVec_eq_repr, instIsIntegralClosureInt, NumberField.Units.coe_injective, NumberField.Units.coe_one, NumberField.mixedEmbedding.unitSMul_smul, Rat.ringOfIntegersEquiv_apply_coe, NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_lt', coe_eq_algebraMap, NumberField.mem_span_integralBasis, NumberField.Units.dirichletUnitTheorem.logEmbedding_component, NumberField.Units.coe_zpow, NumberField.mem_span_basisOfFractionalIdeal, NumberField.FinitePlace.norm_eq_one_iff_notMem, NumberField.mixedEmbedding.fractionalIdealLatticeBasis_apply, instIsScalarTower, instIsScalarTower_1, NumberField.toNNReal_valued_eq_adicAbv, NumberField.IsCMField.RingOfIntegers.complexConj_eq_self_iff, NumberField.basisOfFractionalIdeal_apply, RingOfIntegers.algebraMap_norm_algebraMap, NumberField.FinitePlace.isFinitePlace, NumberField.instFiniteIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule, map_mk, NumberField.exists_ne_zero_mem_ideal_of_norm_le_mul_sqrt_discr, NumberField.Units.finrank_mul_regulator_eq_det, IsDedekindDomain.HeightOneSpectrum.embedding_mul_absNorm, NumberField.instIsLocalizedModuleIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmoduleValFractionalIdealNonZeroDivisorsRestrictScalarsSubtype, NumberField.FinitePlace.norm_le_one, NumberField.Units.sum_mult_mul_log, NumberField.Units.dirichletUnitTheorem.exists_unit, instIsIntegralClosure, NumberField.mixedEmbedding.norm_unit, NumberField.IsCMField.complexConj_torsion, NumberField.house.basis_repr_norm_le_const_mul_house, NumberField.IsCMField.Units.complexConj_eq_self_iff, NumberField.mixedEmbedding.fundamentalCone.expMap_basis_of_ne, NumberField.FinitePlace.norm_def, Rat.ringOfIntegersWithValEquiv_apply
instCoeHead πŸ“–CompOpβ€”
instCommRing πŸ“–CompOp
345 mathmath: IsPrimitiveRoot.subOneIntegralPowerBasis_gen_prime, IsPrimitiveRoot.toInteger_isPrimitiveRoot, IsCyclotomicExtension.Rat.Three.eta_sq_add_eta_add_one, NumberField.Ideal.ramificationIdx_primesOverSpanEquivMonicFactorsMod_symm_apply', NumberField.basisMatrix_eq_embeddingsMatrixReindex, NumberField.mixedEmbedding.fundamentalCone.expMapBasis_apply', NumberField.mixedEmbedding.fundamentalDomain_integerLattice, IsCyclotomicExtension.Rat.five_pid, IsPrimitiveRoot.not_exists_int_prime_dvd_sub_of_prime_ne_two', Rat.RingOfIntegers.isUnit_iff, IsCyclotomicExtension.Rat.ramificationIdxIn_eq_of_prime, IsCyclotomicExtension.Rat.inertiaDeg_eq_of_prime_pow, inst_isScalarTower, NumberField.mixedEmbedding.fundamentalCone.preimageOfMemIntegerSet_mixedEmbedding, NumberField.Ideal.inertiaDeg_primesOverSpanEquivMonicFactorsMod_symm_apply, NumberField.canonicalEmbedding.mem_span_latticeBasis, NumberField.integralBasis_apply, IsPrimitiveRoot.zeta_sub_one_prime_of_two_pow, NumberField.Units.logEmbedding_fundSystem, NumberField.prod_nonarchAbsVal_eq, NumberField.isCoprime_differentIdeal_of_isCoprime_discr, NumberField.Units.instNonemptySubtypeUnitsRingOfIntegersMemSubgroupTorsion, NumberField.FinitePlace.mk_apply, NumberField.instFreeIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule, NumberField.canonicalEmbedding.latticeBasis_apply, NumberField.IsCMField.unitsComplexConj_torsion, HeightOneSpectrum.one_lt_absNorm_nnreal, NumberField.hermiteTheorem.minkowskiBound_lt_boundOfDiscBdd, FermatLastTheoremForThreeGen.Solution.lambda_sq_not_dvd_a_add_eta_sq_mul_b, NumberField.Ideal.inertiaDeg_primesOverSpanEquivMonicFactorsMod_symm_apply', instSMulDistribClass, IsCyclotomicExtension.Rat.ncard_primesOver_of_prime_pow, not_isField, FermatLastTheoremForThreeGen.Solution.lambda_dvd_a_add_eta_sq_mul_b, NumberField.mixedEmbedding.fundamentalCone.integerSetEquivNorm_apply_fst, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_apply, NumberField.mixedEmbedding.norm_unit_smul, NumberField.FinitePlace.norm_def', IsPrimitiveRoot.norm_toInteger_sub_one_of_eq_two_pow, NumberField.mixedEmbedding.mem_idealLattice, NumberField.mixedEmbedding.fundamentalCone.completeBasis_apply_of_ne, NumberField.Units.regOfFamily_eq_det, NumberField.FinitePlace.embedding_apply, IsCyclotomicExtension.Rat.ramificationIdxIn_eq, instIsFractionRing, instFiniteQuotientRingOfIntegersIdealOfNumberFieldOfIsMaximal, IsPrimitiveRoot.zeta_sub_one_prime_of_ne_two, IsPrimitiveRoot.subOneIntegralPowerBasis_gen, IsCyclotomicExtension.Rat.Three.coe_eta, IsCyclotomicExtension.Rat.ramificationIdx_span_zeta_sub_one', RingOfIntegers.exponent_eq_sInf, NumberField.Units.pos_at_place, instIsTorsionFree_1, FermatLastTheoremForThreeGen.lambda_pow_four_dvd_c_cube, NumberField.mixedEmbedding.fundamentalCone.card_isPrincipal_dvd_norm_le, FermatLastTheoremForThreeGen.Solution'.H, withValEquiv_symm_apply, FermatLastTheoremForThreeGen.Solution.hab, NumberField.Units.coe_mul, FermatLastTheoremForThreeGen.Solution.a_add_eta_mul_b, NumberField.mixedEmbedding.fundamentalCone.card_isPrincipal_norm_eq_mul_torsion, IsPrimitiveRoot.norm_toInteger_sub_one_of_eq_two, NumberField.FinitePlace.prod_eq_inv_abs_norm_int, IsPrimitiveRoot.not_exists_int_prime_dvd_sub_of_prime_ne_two, IsPrimitiveRoot.integralPowerBasisOfPrimePow_gen, NumberField.FinitePlace.norm_embedding_eq, instIsDedekindDomainWithVal, IsCyclotomicExtension.Rat.ramificationIdx_eq_of_prime_pow, NumberField.mixedEmbedding.fundamentalCone.integerSetQuotEquivAssociates_apply, Rat.IsIntegralClosure.intEquiv_apply_eq_ringOfIntegersEquiv, IsPrimitiveRoot.prime_norm_toInteger_sub_one_of_prime_pow_ne_two, IsCyclotomicExtension.Rat.ramificationIdx_eq_of_prime, IsPrimitiveRoot.adjoinEquivRingOfIntegers_symm_apply, instIsGaloisGroupIntRingOfIntegersOfRat, NumberField.mixedEmbedding.fundamentalCone.integerSetEquiv_apply_fst, IsDedekindDomain.HeightOneSpectrum.equivHeightOneSpectrum_symm_apply, NumberField.Units.map_complexEmbedding_torsion, instIsTorsionFree_2, NumberField.Units.span_basisOfIsMaxRank, IsPrimitiveRoot.subOneIntegralPowerBasis'_gen_prime, NumberField.Units.logEmbeddingQuot_apply, NumberField.canonicalEmbedding.integralBasis_repr_apply, NumberField.Units.basisOfIsMaxRank_apply, RingOfIntegers.isUnit_norm_of_isGalois, NumberField.Units.regulator_eq_det, IsCyclotomicExtension.Rat.p_mem_span_zeta_sub_one, extension_algebra_isIntegral, NumberField.mixedEmbedding.fundamentalDomain_idealLattice, NumberField.mixedEmbedding.fundamentalCone.integerSetTorsionSMul_smul_coe, IsCyclotomicExtension.Rat.inertiaDegIn_of_not_dvd, NumberField.Units.coe_coe, Algebra.coe_norm_int, NumberField.Units.instFiniteIntAdditiveUnitsRingOfIntegers, NumberField.Units.finrank_mul_regOfFamily_eq_det, NumberField.mixedEmbedding.mem_span_fractionalIdealLatticeBasis, IsPrimitiveRoot.adjoinEquivRingOfIntegers_apply, NumberField.det_basisOfFractionalIdeal_eq_absNorm, coe_eq_zero_iff, NumberField.Units.complexEmbedding_injective, instIsNoetherianInt, NumberField.Units.norm, RingOfIntegers.isPrincipalIdealRing_of_abs_discr_lt, IsCyclotomicExtension.Rat.inertiaDegIn_eq_of_prime_pow, IsPrimitiveRoot.norm_toInteger_pow_sub_one_of_two, instIsLocalizationAlgebraMapSubmonoidIntNonZeroDivisors, NumberField.mixedEmbedding.span_idealLatticeBasis, IsPrimitiveRoot.integralPowerBasis'_gen, NumberField.IsCMField.coe_ringOfIntegersComplexConj, NumberField.Units.fundSystem_mk, IsPrimitiveRoot.prime_norm_toInteger_sub_one_of_prime_ne_two', NumberField.FinitePlace.maximalIdeal_injective, NumberField.IsCMField.indexRealUnits_mul_eq, NumberField.Units.dirichletUnitTheorem.map_logEmbedding_sup_torsion, NumberField.FinitePlace.norm_lt_one_iff_mem, NumberField.mixedEmbedding.unit_smul_eq_iff_mul_eq, NumberField.mixedEmbedding.fundamentalCone.unit_smul_mem_iff_mem_torsion, IsPrimitiveRoot.subOneIntegralPowerBasis'_gen, RingOfIntegers.norm_algebraMap, IsPrimitiveRoot.power_basis_int'_dim, NumberField.mixedEmbedding.fundamentalCone.integerSetTorsionSMul_stabilizer, NumberField.Units.rank_modTorsion, ker_algebraMap_eq_bot, NumberField.mixedEmbedding.mem_span_latticeBasis, NumberField.Units.dirichletUnitTheorem.sum_logEmbedding_component, FermatLastTheoremForThreeGen.Solution'.ha, IsPrimitiveRoot.finite_quotient_span_sub_one', IsPrimitiveRoot.finite_quotient_span_sub_one, NumberField.mixedEmbedding.covolume_idealLattice, FermatLastTheoremForThreeGen.a_cube_b_cube_congr_one_or_neg_one, instIsDedekindDomain, NumberField.classNumber_eq_one_iff, NumberField.IsCMField.unitsMulComplexConjInv_apply_torsion, NumberField.Ideal.liesOver_primesOverSpanEquivMonicFactorsMod_symm, RingOfIntegers.not_dvd_exponent_iff, IsPrimitiveRoot.integralPowerBasisOfPrimePow_dim, NumberField.mixedEmbedding.fundamentalCone.quotIntNorm_apply, NumberField.Units.mem_torsion, NumberField.discr_eq_discr, NumberField.mixedEmbedding.fundamentalCone.integerSetToAssociates_apply, NumberField.Units.regOfFamily_div_regulator, NumberField.mixedEmbedding.fundamentalCone.exists_unit_smul_mem, IsCyclotomicExtension.ring_of_integers', IsCyclotomicExtension.Rat.Three.eta_sq, NumberField.Units.coe_neg_one, IsCyclotomicExtension.ringOfIntegers, IsCyclotomicExtension.Rat.inertiaDeg_span_zeta_sub_one, NumberField.mixedEmbedding.det_basisOfFractionalIdeal_eq_norm, NumberField.mixedEmbedding.logMap_eq_logEmbedding, RingOfIntegers.norm_norm, NumberField.IsCMField.closure_realFundSystem_sup_torsion, NumberField.Ideal.tendsto_norm_le_div_atTopβ‚€, NumberField.isFinitePlace_iff, NumberField.Units.instIsCyclicSubtypeUnitsRingOfIntegersMemSubgroupTorsion, IsCyclotomicExtension.Rat.inertiaDeg_eq, rank, NumberField.integralBasis_repr_apply, IsPrimitiveRoot.finite_quotient_toInteger_sub_one, HeightOneSpectrum.adicAbv_def, IsCyclotomicExtension.Rat.inertiaDegIn_eq_of_not_dvd, NumberField.Units.dirichletUnitTheorem.mult_log_place_eq_zero, NumberField.Units.closure_fundSystem_sup_torsion_eq_top, NumberField.FinitePlace.coe_apply, IsPrimitiveRoot.norm_toInteger_sub_one_eq_one, IsCyclotomicExtension.Rat.eq_span_zeta_sub_one_of_liesOver', IsCyclotomicExtension.Rat.inertiaDeg_span_zeta_sub_one', RingOfIntegers.isUnit_norm, NumberField.Units.torsion_eq_one_or_neg_one_of_odd_finrank, NumberField.mixedEmbedding.span_latticeBasis, NumberField.FinitePlace.norm_def_int, instIsTorsionFree, NumberField.Units.dirichletUnitTheorem.logEmbedding_eq_zero_iff, IsCyclotomicExtension.Rat.isPrime_span_zeta_sub_one', IsCyclotomicExtension.Rat.ncard_primesOver_of_prime, IsCyclotomicExtension.Rat.liesOver_span_zeta_sub_one, withValEquiv_apply, NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_lt, coe_injective, instFreeInt, NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_of_norm_le, NumberField.IsCMField.unitsMulComplexConjInv_ker, instIsDomain, isIntegral_coe, IsCyclotomicExtension.Rat.eq_span_zeta_sub_one_of_liesOver, IsCyclotomicExtension.Rat.Three.Units.mem, NumberField.Units.complexEmbedding_apply, NumberField.fractionalIdeal_rank, instCharZero, NumberField.mixedEmbedding.fundamentalCone.mixedEmbedding_preimageOfMemIntegerSet, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_symm_apply, mapRingHom_apply, RingOfIntegers.coe_norm, NumberField.Units.coe_pow, NumberField.mixedEmbedding.volume_fundamentalDomain_fractionalIdealLatticeBasis, IsCyclotomicExtension.Rat.Three.lambda_dvd_or_dvd_sub_one_or_dvd_add_one, NumberField.IsCMField.unitsMulComplexConjInv_apply, NumberField.Units.abs_det_eq_abs_det, IsPrimitiveRoot.prime_norm_toInteger_sub_one_of_prime_ne_two, instIsGaloisGroupRingOfIntegersOfNumberField, FermatLastTheoremForThreeGen.Solution'.hcdvd, NumberField.inverse_basisMatrix_mulVec_eq_repr, IsPrimitiveRoot.toInteger_sub_one_dvd_prime, instIsIntegralClosureInt, NumberField.IsCMField.ringOfIntegersComplexConj_eq_self_iff, RingOfIntegers.ZModXQuotSpanEquivQuotSpan_mk_apply, NumberField.Units.coe_injective, NumberField.mixedEmbedding.fundamentalCone.integerSetToAssociates_eq_iff, NumberField.mixedEmbedding.logMap_unit_smul, NumberField.Units.coe_one, NumberField.IsCMField.mem_realUnits_iff, IsPrimitiveRoot.norm_toInteger_sub_one_of_prime_ne_two, NumberField.canonicalEmbedding.mem_rat_span_latticeBasis, NumberField.mixedEmbedding.unitSMul_smul, extension_isNoetherian, NumberField.IsCMField.unitsComplexConj_eq_self_iff, IsPrimitiveRoot.toInteger_sub_one_dvd_prime', FermatLastTheoremForThreeGen.Solution'.hb, IsCyclotomicExtension.Rat.ramificationIdxIn_eq_of_not_dvd, NumberField.exists_ideal_in_class_of_norm_le, IsPrimitiveRoot.card_quotient_toInteger_sub_one, IsCyclotomicExtension.Rat.ramificationIdxIn_eq_of_prime_pow, Rat.ringOfIntegersEquiv_apply_coe, NumberField.Units.rootsOfUnity_eq_torsion, NumberField.Ideal.tendsto_norm_le_div_atTop, NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_lt', IsCyclotomicExtension.Rat.inertiaDegIn_eq, coe_eq_algebraMap, NumberField.mem_span_integralBasis, mapRingEquiv_apply, neg_mk, IsCyclotomicExtension.Rat.isPrime_span_zeta_sub_one, NumberField.mixedEmbedding.fundamentalCone.idealSetEquiv_symm_apply, IsCyclotomicExtension.Rat.three_pid, IsPrimitiveRoot.not_exists_int_prime_dvd_sub_of_prime_pow_ne_two, NumberField.Units.dirichletUnitTheorem.logEmbedding_component, NumberField.Units.coe_zpow, NumberField.mem_span_basisOfFractionalIdeal, NumberField.Units.logEmbeddingQuot_injective, NumberField.mixedEmbedding.latticeBasis_apply, NumberField.mixedEmbedding.unit_smul_eq_zero, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply_eq_span, RingOfIntegers.exponent_eq_one_iff, NumberField.FinitePlace.norm_eq_one_iff_notMem, instIsIntegrallyClosed, NumberField.mixedEmbedding.latticeBasis_repr_apply, isIntegral, IsPrimitiveRoot.norm_toInteger_pow_sub_one_of_prime_pow_ne_two, IsCyclotomicExtension.Rat.map_eq_span_zeta_sub_one_pow, IsPrimitiveRoot.IsCyclotomicExtension.ringOfIntegersOfPrimePow, IsPrimitiveRoot.integralPowerBasis_dim, IsCyclotomicExtension.Rat.ramificationIdx_of_not_dvd, NumberField.isUnit_iff_norm, NumberField.mixedEmbedding.fractionalIdealLatticeBasis_apply, IsPrimitiveRoot.subOneIntegralPowerBasisOfPrimePow_gen, IsCyclotomicExtension.Rat.ramificationIdx_eq_of_not_dvd, IsCyclotomicExtension.Rat.adjoin_singleton_eq_top, instIsScalarTower, NumberField.Units.instFGUnitsRingOfIntegers, NumberField.Ideal.ramificationIdx_primesOverSpanEquivMonicFactorsMod_symm_apply, instIsScalarTower_1, NumberField.toNNReal_valued_eq_adicAbv, NumberField.mixedEmbedding.fundamentalCone.preimage_of_IdealSetMap, instIsIntegralInt, FermatLastTheoremForThreeGen.Solution'.coprime, NumberField.IsCMField.indexRealUnits_eq_two_iff, Rat.ringOfIntegersEquiv_symm_apply_coe, NumberField.IsCMField.RingOfIntegers.complexConj_eq_self_iff, IsPrimitiveRoot.integralPowerBasis_gen, IsCyclotomicExtension.Rat.ramificationIdx_eq, NumberField.mixedEmbedding.volume_fundamentalDomain_latticeBasis, NumberField.Units.logEmbeddingEquiv_apply, IsCyclotomicExtension.Rat.associated_norm_zeta_sub_one, NumberField.Units.isMaxRank_iff_closure_finiteIndex, NumberField.Units.exist_unique_eq_mul_prod, NumberField.basisOfFractionalIdeal_apply, IsCyclotomicExtension.Rat.absNorm_span_zeta_sub_one, NumberField.Units.rootsOfUnity_eq_one, RingOfIntegers.algebraMap_norm_algebraMap, NumberField.FinitePlace.isFinitePlace, NumberField.instFiniteIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule, NumberField.Units.finiteIndex_iff_sup_torsion_finiteIndex, map_mk, IsCyclotomicExtension.Rat.inertiaDeg_of_not_dvd, NumberField.exists_ne_zero_mem_ideal_of_norm_le_mul_sqrt_discr, NumberField.mixedEmbedding.fundamentalCone.mem_idealSet, IsPrimitiveRoot.zeta_sub_one_prime, NumberField.Ideal.tendsto_norm_le_and_mk_eq_div_atTop, NumberField.mixedEmbedding.fundamentalCone.integerSetToAssociates_surjective, NumberField.Units.instFiniteIntAdditiveQuotientUnitsRingOfIntegersSubgroupTorsion, NumberField.mixedEmbedding.fundamentalCone.idealSetEquiv_apply, NumberField.canonicalEmbedding_eq_basisMatrix_mulVec, IsCyclotomicExtension.Rat.ramificationIdxIn_of_not_dvd, NumberField.coe_discr, FermatLastTheoremForThreeGen.a_cube_add_b_cube_eq_mul, NumberField.Units.finrank_mul_regulator_eq_det, IsDedekindDomain.HeightOneSpectrum.embedding_mul_absNorm, IsCyclotomicExtension.Rat.Three.cube_sub_one_eq_mul, NumberField.instIsLocalizedModuleIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmoduleValFractionalIdealNonZeroDivisorsRestrictScalarsSubtype, NumberField.mixedEmbedding.disjoint_span_commMap_ker, NumberField.FinitePlace.norm_le_one, NumberField.Units.sum_mult_mul_log, Algebra.coe_trace_int, IsCyclotomicExtension.Rat.inertiaDeg_eq_of_not_dvd, FermatLastTheoremForThreeGen.lambda_sq_dvd_c, RingOfIntegers.coe_algebraMap_norm, NumberField.Units.regulator_eq_det', minpoly_coe, IsCyclotomicExtension.Rat.ramificationIdxIn_of_prime, FermatLastTheoremForThreeGen.Solution.lambda_sq_not_dvd_a_add_eta_mul_b, NumberField.Units.dirichletUnitTheorem.logEmbedding_ker, IsCyclotomicExtension.Rat.inertiaDeg_eq_of_prime, HeightOneSpectrum.one_lt_absNorm, NumberField.Units.dirichletUnitTheorem.exists_unit, NumberField.IsCMField.map_unitsMulComplexConjInv_torsion, NumberField.Units.complexEmbedding_inj, algebraMap.injective, instIsIntegralClosure, IsPrimitiveRoot.norm_toInteger_sub_one_of_prime_ne_two', NumberField.mixedEmbedding.norm_unit, NumberField.Units.regOfFamily_eq_det', IsCyclotomicExtension.Rat.inertiaDegIn_eq_of_prime, mapRingEquiv_symm_apply, FermatLastTheoremForThreeGen.Solution'.multiplicity_lambda_c_finite, NumberField.IsCMField.complexConj_torsion, instCharZero_1, FermatLastTheoremForThreeGen.ex_cube_add_cube_eq_and_isCoprime_and_not_dvd_and_dvd, RingOfIntegers.dvd_norm, IsPrimitiveRoot.subOneIntegralPowerBasisOfPrimePow_gen_prime, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply, FermatLastTheoremForThreeGen.Solution.lambda_dvd_a_add_eta_mul_b, IsCyclotomicExtension.Rat.ramificationIdx_span_zeta_sub_one, NumberField.house.basis_repr_norm_le_const_mul_house, NumberField.IsCMField.Units.complexConj_eq_self_iff, NumberField.mixedEmbedding.fundamentalCone.expMap_basis_of_ne, NumberField.IsCMField.index_unitsMulComplexConjInv_range_dvd, NumberField.FinitePlace.norm_def, Rat.ringOfIntegersWithValEquiv_apply, IsPrimitiveRoot.norm_toInteger_pow_sub_one_of_prime_ne_two, NumberField.Units.instFreeIntAdditiveQuotientUnitsRingOfIntegersSubgroupTorsion, NumberField.mixedEmbedding.mem_rat_span_latticeBasis, IsPrimitiveRoot.toInteger_cube_eq_one, IsPrimitiveRoot.zeta_sub_one_prime', NumberField.mixedEmbedding.fundamentalCone.intNorm_idealSetEquiv_apply, IsPrimitiveRoot.toInteger_sub_one_not_dvd_two, IsCyclotomicExtension.Rat.Three.lambda_dvd_mul_sub_one_mul_sub_eta_add_one, FermatLastTheoremForThreeGen.lambda_sq_dvd_or_dvd_or_dvd
instMulSemiringAction πŸ“–CompOp
4 mathmath: instSMulDistribClass, instIsGaloisGroupIntRingOfIntegersOfRat, instIsGaloisGroupRingOfIntegersOfNumberField, IsCyclotomicExtension.Rat.galEquivZMod_smul_of_pow_eq
mapAlgEquiv πŸ“–CompOpβ€”
mapAlgHom πŸ“–CompOpβ€”
mapRingEquiv πŸ“–CompOp
2 mathmath: mapRingEquiv_apply, mapRingEquiv_symm_apply
mapRingHom πŸ“–CompOp
1 mathmath: mapRingHom_apply
restrict πŸ“–CompOpβ€”
restrict_addMonoidHom πŸ“–CompOpβ€”
restrict_monoidHom πŸ“–CompOpβ€”
val πŸ“–CompOp
39 mathmath: Rat.RingOfIntegers.isUnit_iff, NumberField.Units.dirichletUnitTheorem.seq_next, NumberField.FinitePlace.prod_eq_inv_abs_norm_int, NumberField.mixedEmbedding.exists_primitive_element_lt_of_isComplex, NumberField.exists_conjugate_one_le_norm, NumberField.mixedEmbedding.exists_ne_zero_mem_ringOfIntegers_of_norm_le, NumberField.Units.coe_coe, Algebra.coe_norm_int, NumberField.IsCMField.coe_ringOfIntegersComplexConj, NumberField.FinitePlace.norm_lt_one_iff_mem, NumberField.mixedEmbedding.unit_smul_eq_iff_mul_eq, NumberField.mixedEmbedding.fundamentalCone.existsUnique_preimage_of_mem_integerSet, NumberField.mixedEmbedding.exists_ne_zero_mem_ringOfIntegers_lt', NumberField.FinitePlace.mulSupport_finite_int, NumberField.FinitePlace.norm_def_int, NumberField.mixedEmbedding.fundamentalCone.mixedEmbedding_preimageOfMemIntegerSet, mapRingHom_apply, RingOfIntegers.coe_norm, NumberField.mixedEmbedding.exists_primitive_element_lt_of_isReal, NumberField.inverse_basisMatrix_mulVec_eq_repr, NumberField.mixedEmbedding.exists_ne_zero_mem_ringOfIntegers_lt, coe_eq_algebraMap, mapRingEquiv_apply, NumberField.exists_ne_zero_mem_ringOfIntegers_of_norm_le_mul_sqrt_discr, NumberField.FinitePlace.norm_eq_one_iff_notMem, NumberField.isUnit_iff_norm, ext_iff, Rat.ringOfIntegersEquiv_symm_apply_coe, NumberField.IsCMField.RingOfIntegers.complexConj_eq_self_iff, NumberField.mixedEmbedding.fundamentalCone.mem_idealSet, NumberField.mixedEmbedding.fundamentalCone.mem_integerSet, IsDedekindDomain.HeightOneSpectrum.embedding_mul_absNorm, NumberField.FinitePlace.norm_le_one, Algebra.coe_trace_int, RingOfIntegers.coe_algebraMap_norm, minpoly_coe, eq_iff, mapRingEquiv_symm_apply, NumberField.house.basis_repr_norm_le_const_mul_house

Theorems

NameKindAssumesProvesValidatesDepends On
coe_eq_algebraMap πŸ“–mathematicalβ€”val
DFunLike.coe
RingHom
NumberField.RingOfIntegers
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
β€”β€”
coe_eq_zero_iff πŸ“–mathematicalβ€”DFunLike.coe
RingHom
NumberField.RingOfIntegers
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”map_eq_zero_iff
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
coe_injective
coe_injective πŸ“–mathematicalβ€”NumberField.RingOfIntegers
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
β€”FaithfulSMul.algebraMap_injective
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
instIsDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
instIsTorsionFree
coe_mk πŸ“–β€”Subalgebra
CommRing.toCommSemiring
Int.instCommRing
CommSemiring.toSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Ring.toIntAlgebra
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
β€”β€”β€”
coe_ne_zero_iff πŸ“–β€”β€”β€”β€”map_ne_zero_iff
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
coe_injective
eq_iff πŸ“–mathematicalβ€”valβ€”ext_iff
ext πŸ“–β€”valβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”valβ€”ext
extension_algebra_isIntegral πŸ“–mathematicalβ€”Algebra.IsIntegral
NumberField.RingOfIntegers
instCommRing
CommRing.toRing
NumberField.inst_ringOfIntegersAlgebra
β€”IsIntegralClosure.isIntegral_algebra
instIsIntegralClosure
instIsScalarTower_1
extension_isNoetherian πŸ“–mathematicalβ€”IsNoetherian
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
NumberField.inst_ringOfIntegersAlgebra
β€”IsIntegralClosure.isNoetherian
instIsFractionRing
instIsScalarTower
instIsIntegralClosure
instIsScalarTower_1
NumberField.instFiniteDimensional
instIsDomain
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsAlgebraic.of_finite
IsLocalRing.toNontrivial
Field.instIsLocalRing
PerfectField.ofCharZero
NumberField.to_charZero
instIsIntegrallyClosed
IsDedekindRing.toIsNoetherian
IsDedekindDomain.toIsDedekindRing
instIsDedekindDomain
instCharZero πŸ“–mathematicalβ€”CharZero
NumberField.RingOfIntegers
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
instCommRing
β€”SubsemiringClass.instCharZero
Subalgebra.instSubsemiringClass
NumberField.to_charZero
instCharZero_1 πŸ“–mathematicalβ€”CharZero
NumberField.RingOfIntegers
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
instCommRing
β€”CharZero.of_module
instFreeInt πŸ“–mathematicalβ€”Module.Free
NumberField.RingOfIntegers
Int.instSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
AddCommGroup.toIntModule
Ring.toAddCommGroup
CommRing.toRing
β€”IsIntegralClosure.module_free
Rat.isFractionRing
NumberField.to_charZero
AddCommGroup.intIsScalarTower
instIsIntegralClosureInt
NumberField.to_finiteDimensional
Int.instIsDomain
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsAlgebraic.of_finite
Rat.nontrivial
PerfectField.ofCharZero
Rat.instCharZero
instIsTorsionFreeIntOfIsAddTorsionFree
IsAddTorsionFree.of_isCancelMulZero_charZero
IsDomain.toIsCancelMulZero
instIsDomain
EuclideanDomain.to_principal_ideal_domain
instIsDedekindDomain πŸ“–mathematicalβ€”IsDedekindDomain
NumberField.RingOfIntegers
instCommRing
β€”IsIntegralClosure.isDedekindDomain
Rat.isFractionRing
NumberField.to_charZero
AddCommGroup.intIsScalarTower
instIsIntegralClosureInt
NumberField.to_finiteDimensional
Int.instIsDomain
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsAlgebraic.of_finite
Rat.nontrivial
PerfectField.ofCharZero
Rat.instCharZero
instIsDomain
IsPrincipalIdealRing.isDedekindDomain
EuclideanDomain.to_principal_ideal_domain
instIsDomain πŸ“–mathematicalβ€”IsDomain
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
β€”instIsDomainSubtypeMemSubalgebraIntegralClosure
instIsDomain
instIsFractionRing πŸ“–mathematicalβ€”IsFractionRing
NumberField.RingOfIntegers
CommRing.toCommSemiring
instCommRing
Semifield.toCommSemiring
Field.toSemifield
instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
β€”integralClosure.isFractionRing_of_finite_extension
Rat.isFractionRing
Int.instIsDomain
NumberField.to_charZero
AddCommGroup.intIsScalarTower
NumberField.to_finiteDimensional
instIsIntegralClosure πŸ“–mathematicalβ€”IsIntegralClosure
NumberField.RingOfIntegers
instCommRing
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
β€”IsIntegralClosure.tower_top
AddCommGroup.intIsScalarTower
instIsIntegralClosureInt
instIsIntegralInt
instIsIntegralClosureInt πŸ“–mathematicalβ€”IsIntegralClosure
NumberField.RingOfIntegers
Int.instCommRing
CommRing.toCommSemiring
instCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Ring.toIntAlgebra
DivisionRing.toRing
Field.toDivisionRing
instAlgebra_1
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
β€”integralClosure.isIntegralClosure
instIsIntegralInt πŸ“–mathematicalβ€”Algebra.IsIntegral
NumberField.RingOfIntegers
Int.instCommRing
CommRing.toRing
instCommRing
Ring.toIntAlgebra
β€”IsIntegralClosure.isIntegral_algebra
instIsIntegralClosureInt
AddCommGroup.intIsScalarTower
instIsIntegrallyClosed πŸ“–mathematicalβ€”IsIntegrallyClosed
NumberField.RingOfIntegers
instCommRing
β€”integralClosure.isIntegrallyClosedOfFiniteExtension
Rat.isFractionRing
NumberField.to_charZero
AddCommGroup.intIsScalarTower
Int.instIsDomain
NumberField.to_finiteDimensional
instIsLocalizationAlgebraMapSubmonoidIntNonZeroDivisors πŸ“–mathematicalβ€”IsLocalization
NumberField.RingOfIntegers
CommRing.toCommSemiring
instCommRing
Algebra.algebraMapSubmonoid
Int.instCommSemiring
CommSemiring.toSemiring
Ring.toIntAlgebra
CommRing.toRing
nonZeroDivisors
Semiring.toMonoidWithZero
Int.instSemiring
Semifield.toCommSemiring
Field.toSemifield
instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
β€”IsIntegralClosure.isLocalization_of_isSeparable
Rat.isFractionRing
NumberField.to_charZero
AddCommGroup.intIsScalarTower
instIsIntegralClosureInt
Int.instIsDomain
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsAlgebraic.of_finite
Rat.nontrivial
NumberField.to_finiteDimensional
PerfectField.ofCharZero
Rat.instCharZero
instIsNoetherianInt πŸ“–mathematicalβ€”IsNoetherian
NumberField.RingOfIntegers
Int.instSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
AddCommGroup.toIntModule
Ring.toAddCommGroup
CommRing.toRing
β€”IsIntegralClosure.isNoetherian
Rat.isFractionRing
NumberField.to_charZero
AddCommGroup.intIsScalarTower
instIsIntegralClosureInt
NumberField.to_finiteDimensional
Int.instIsDomain
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsAlgebraic.of_finite
Rat.nontrivial
PerfectField.ofCharZero
Rat.instCharZero
IsDedekindRing.toIsIntegralClosure
IsDedekindDomain.toIsDedekindRing
IsPrincipalIdealRing.isDedekindDomain
EuclideanDomain.to_principal_ideal_domain
IsDedekindRing.toIsNoetherian
instIsScalarTower πŸ“–mathematicalβ€”IsScalarTower
NumberField.RingOfIntegers
Algebra.toSMul
CommRing.toCommSemiring
instCommRing
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
instAlgebra_1
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
β€”IsScalarTower.subalgebra
instIsScalarTower_1 πŸ“–mathematicalβ€”IsScalarTower
NumberField.RingOfIntegers
Algebra.toSMul
CommRing.toCommSemiring
instCommRing
CommSemiring.toSemiring
NumberField.inst_ringOfIntegersAlgebra
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
instAlgebra_1
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
β€”IsScalarTower.of_algebraMap_eq'
instIsTorsionFree πŸ“–mathematicalβ€”Module.IsTorsionFree
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instAlgebra
β€”Subalgebra.instIsTorsionFree'
instIsDomain
instIsTorsionFree_1 πŸ“–mathematicalβ€”Module.IsTorsionFree
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
NumberField.inst_ringOfIntegersAlgebra
β€”Module.isTorsionFree_iff_algebraMap_injective
instIsDomain
algebraMap.injective
instIsTorsionFree_2 πŸ“–mathematicalβ€”Module.IsTorsionFree
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
β€”Module.IsTorsionFree.trans_faithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
instIsDomain
instNontrivial
instIsTorsionFree_1
instIsTorsionFree
instIsScalarTower_1
instNontrivial πŸ“–mathematicalβ€”Nontrivial
NumberField.RingOfIntegers
β€”SubsemiringClass.nontrivial
Subalgebra.instSubsemiringClass
IsLocalRing.toNontrivial
Field.instIsLocalRing
instSMulDistribClass πŸ“–mathematicalβ€”SMulDistribClass
NumberField.RingOfIntegers
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
instCommRing
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulSemiringAction.toDistribMulAction
CommSemiring.toSemiring
CommRing.toCommSemiring
instMulSemiringAction
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
DivisionSemiring.toGroupWithZero
Semifield.toDivisionSemiring
Field.toSemifield
instSMulZeroClass
MulSemiringAction.toMulDistribMulAction
DivisionSemiring.toSemiring
Algebra.toSMul
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
instAlgebra_1
Algebra.id
Semifield.toCommSemiring
β€”AddGroup.int_smulCommClass'
instSMulDistribClassSubtypeMemSubalgebraIntegralClosure
inst_isScalarTower πŸ“–mathematicalβ€”IsScalarTower
NumberField.RingOfIntegers
Algebra.toSMul
CommRing.toCommSemiring
instCommRing
CommSemiring.toSemiring
NumberField.inst_ringOfIntegersAlgebra
β€”IsScalarTower.of_algHom
AlgHom.algHomClass
isIntegral πŸ“–mathematicalβ€”IsIntegral
NumberField.RingOfIntegers
Int.instCommRing
CommRing.toRing
instCommRing
Ring.toIntAlgebra
β€”isIntegral_coe
coe_eq_zero_iff
Polynomial.hom_evalβ‚‚
IsScalarTower.algebraMap_eq
AddCommGroup.intIsScalarTower
isIntegral_coe πŸ“–mathematicalβ€”IsIntegral
Int.instCommRing
DivisionRing.toRing
Field.toDivisionRing
Ring.toIntAlgebra
DFunLike.coe
RingHom
NumberField.RingOfIntegers
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
instAlgebra_1
Algebra.id
Semifield.toCommSemiring
β€”β€”
ker_algebraMap_eq_bot πŸ“–mathematicalβ€”RingHom.ker
NumberField.RingOfIntegers
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
RingHom.instFunLike
RingHom.instRingHomClass
algebraMap
NumberField.inst_ringOfIntegersAlgebra
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”RingHom.instRingHomClass
RingHom.ker_eq_bot_iff_eq_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
IsLocalRing.toNontrivial
Field.instIsLocalRing
mapRingEquiv_apply πŸ“–mathematicalβ€”val
DFunLike.coe
RingEquiv
NumberField.RingOfIntegers
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
mapRingEquiv
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”β€”
mapRingEquiv_symm_apply πŸ“–mathematicalβ€”val
DFunLike.coe
RingEquiv
NumberField.RingOfIntegers
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
mapRingEquiv
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”β€”
mapRingHom_apply πŸ“–mathematicalβ€”val
DFunLike.coe
RingHom
NumberField.RingOfIntegers
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
RingHom.instFunLike
mapRingHom
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”β€”
map_mk πŸ“–mathematicalSubalgebra
CommRing.toCommSemiring
Int.instCommRing
CommSemiring.toSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Ring.toIntAlgebra
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
DFunLike.coe
RingHom
NumberField.RingOfIntegers
Semiring.toNonAssocSemiring
instCommRing
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
instAlgebra_1
Algebra.id
Semifield.toCommSemiring
β€”β€”
minpoly_coe πŸ“–mathematicalβ€”minpoly
Int.instCommRing
DivisionRing.toRing
Field.toDivisionRing
Ring.toIntAlgebra
val
NumberField.RingOfIntegers
CommRing.toRing
instCommRing
β€”minpoly.algebraMap_eq
AddCommGroup.intIsScalarTower
coe_injective
mk_add_mk πŸ“–mathematicalSubalgebra
CommRing.toCommSemiring
Int.instCommRing
CommSemiring.toSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Ring.toIntAlgebra
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Subalgebra.toCommRing
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
SubsemiringClass.toAddSubmonoidClass
Subalgebra.instSubsemiringClass
β€”β€”
mk_eq_mk πŸ“–β€”Subalgebra
CommRing.toCommSemiring
Int.instCommRing
CommSemiring.toSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Ring.toIntAlgebra
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
β€”β€”β€”
mk_mul_mk πŸ“–mathematicalSubalgebra
CommRing.toCommSemiring
Int.instCommRing
CommSemiring.toSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Ring.toIntAlgebra
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Subalgebra.toCommRing
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
SubsemiringClass.toSubmonoidClass
Subalgebra.instSubsemiringClass
β€”β€”
mk_one πŸ“–mathematicalβ€”Subalgebra
CommRing.toCommSemiring
Int.instCommRing
CommSemiring.toSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Ring.toIntAlgebra
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
SubsemiringClass.addSubmonoidWithOneClass
Subalgebra.instSubsemiringClass
OneMemClass.one
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
Subalgebra.instSubsemiringClass
mk_sub_mk πŸ“–mathematicalSubalgebra
CommRing.toCommSemiring
Int.instCommRing
CommSemiring.toSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Ring.toIntAlgebra
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
AddSubgroupClass.sub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
SubringClass.addSubgroupClass
Subalgebra.instSubringClass
SubNegMonoid.toSub
sub_mem
β€”SubringClass.addSubgroupClass
Subalgebra.instSubringClass
mk_zero πŸ“–mathematicalβ€”Subalgebra
CommRing.toCommSemiring
Int.instCommRing
CommSemiring.toSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Ring.toIntAlgebra
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
SubsemiringClass.toAddSubmonoidClass
Subalgebra.instSubsemiringClass
ZeroMemClass.zero
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
Subalgebra.instSubsemiringClass
neg_mk πŸ“–mathematicalSubalgebra
CommRing.toCommSemiring
Int.instCommRing
CommSemiring.toSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Ring.toIntAlgebra
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
NumberField.RingOfIntegers
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
instCommRing
NegMemClass.neg_mem
SubringClass.toNegMemClass
Ring.toSemiring
Subalgebra.instSubringClass
β€”β€”
not_isField πŸ“–mathematicalβ€”IsField
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
β€”RingHom.injective_int
instCharZero_1
NumberField.to_charZero
Int.not_isField
Algebra.IsIntegral.isField_iff_isField
IsIntegralClosure.isIntegral_algebra
instIsIntegralClosureInt
AddCommGroup.intIsScalarTower
instIsDomain
rank πŸ“–mathematicalβ€”Module.finrank
NumberField.RingOfIntegers
Int.instSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
AddCommGroup.toIntModule
Ring.toAddCommGroup
CommRing.toRing
Rat.semiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
Field.toDivisionRing
NumberField.to_charZero
β€”IsIntegralClosure.rank
Rat.isFractionRing
NumberField.to_charZero
AddCommGroup.intIsScalarTower
instIsIntegralClosureInt
NumberField.to_finiteDimensional
Int.instIsDomain
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsAlgebraic.of_finite
Rat.nontrivial
PerfectField.ofCharZero
Rat.instCharZero
EuclideanDomain.to_principal_ideal_domain
instIsTorsionFreeIntOfIsAddTorsionFree
IsAddTorsionFree.of_isCancelMulZero_charZero
IsDomain.toIsCancelMulZero
instIsDomain

NumberField.RingOfIntegers.algebraMap

Theorems

NameKindAssumesProvesValidatesDepends On
injective πŸ“–mathematicalβ€”NumberField.RingOfIntegers
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
RingHom.instFunLike
algebraMap
NumberField.inst_ringOfIntegersAlgebra
β€”RingHom.instRingHomClass
RingHom.injective_iff_ker_eq_bot
NumberField.RingOfIntegers.ker_algebraMap_eq_bot

Rat

Definitions

NameCategoryTheorems
ringOfIntegersEquiv πŸ“–CompOp
3 mathmath: IsIntegralClosure.intEquiv_apply_eq_ringOfIntegersEquiv, ringOfIntegersEquiv_apply_coe, ringOfIntegersEquiv_symm_apply_coe

Theorems

NameKindAssumesProvesValidatesDepends On
numberField πŸ“–mathematicalβ€”NumberField
instField
β€”instCharZero
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
FiniteDimensional.finiteDimensional_self
Module.Projective.of_free
Module.free_of_finite_type_torsion_free'
EuclideanDomain.to_principal_ideal_domain
isDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
ringOfIntegersEquiv_apply_coe πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
NumberField.RingOfIntegers
instField
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NumberField.RingOfIntegers.instCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
ringOfIntegersEquiv
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
semiring
RingHom.instFunLike
algebraMap
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
instDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
β€”RingEquiv.surjective
eq_intCast
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
map_intCast
RingHom.instRingHomClass
ringOfIntegersEquiv_symm_apply_coe πŸ“–mathematicalβ€”NumberField.RingOfIntegers.val
instField
DFunLike.coe
RingEquiv
NumberField.RingOfIntegers
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NumberField.RingOfIntegers.instCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
ringOfIntegersEquiv
β€”eq_intCast
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass

---

← Back to Index