Documentation Verification Report

CMField

πŸ“ Source: Mathlib/NumberTheory/NumberField/CMField.lean

Statistics

MetricCount
DefinitionsequivMaximalRealSubfield, IsCMField, complexConj, equivInfinitePlace, indexRealUnits, realFundSystem, realUnits, ringOfIntegersComplexConj, starRing, unitsComplexConj, unitsMulComplexConjInv
11
TheoremsinstIsCMFieldOfTopSetNatRat, isCMField, algebraMap_equivMaximalRealSubfield_symm_apply, eq_maximalRealSubfield, equivMaximalRealSubfield_apply, of_isMulCommutative, complexConj_eq_self_iff, complexConj_eq_self_iff, card_infinitePlace_eq_card_infinitePlace, closure_realFundSystem_sup_torsion, coe_ringOfIntegersComplexConj, complexConj_apply_apply, complexConj_apply_eq_self, complexConj_eq_self_iff, complexConj_ne_one, complexConj_torsion, complexEmbedding_complexConj, equivInfinitePlace_apply, equivInfinitePlace_symm_apply, exists_isConj, indexRealUnits_eq_one_or_two, indexRealUnits_eq_two_iff, indexRealUnits_mul_eq, index_unitsMulComplexConjInv_range_dvd, infinitePlace_complexConj, isConj_complexConj, isConj_eq_isConj, isQuadraticExtension, isTotallyComplex, is_quadratic, map_unitsMulComplexConjInv_torsion, mem_realUnits_iff, ofCMExtension, of_forall_isConj, of_isAbelianGalois, orderOf_complexConj, regOfFamily_realFunSystem, regulator_div_regulator_eq_two_pow_mul_indexRealUnits_inv, ringOfIntegersComplexConj_eq_self_iff, to_isTotallyComplex, unitsComplexConj_eq_self_iff, unitsComplexConj_torsion, unitsMulComplexConjInv_apply, unitsMulComplexConjInv_apply_torsion, unitsMulComplexConjInv_ker, units_rank_eq_units_rank, zpowers_complexConj_eq_top
47
Total58

IsCyclotomicExtension.Rat

Theorems

NameKindAssumesProvesValidatesDepends On
instIsCMFieldOfTopSetNatRat πŸ“–mathematicalβ€”NumberField.IsCMFieldβ€”isCMField
isCMField πŸ“–mathematicalSet
Set.instMembership
NumberField.IsCMFieldβ€”IsCyclotomicExtension.integral
ne_of_gt
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
IsCyclotomicExtension.exists_isPrimitiveRoot
IntermediateField.charZero
Rat.instCharZero
IsPrimitiveRoot.intermediateField_adjoin_isCyclotomicExtension
isTotallyComplex
NumberField.isTotallyComplex_of_algebra
IsCyclotomicExtension.isAbelianGalois
NumberField.IsCMField.of_isAbelianGalois

NumberField

Definitions

NameCategoryTheorems
IsCMField πŸ“–CompData
6 mathmath: IsCyclotomicExtension.Rat.instIsCMFieldOfTopSetNatRat, IsCMField.of_forall_isConj, IsCMField.NumberField.CMExtension.of_isMulCommutative, IsCMField.ofCMExtension, IsCMField.of_isAbelianGalois, IsCyclotomicExtension.Rat.isCMField

NumberField.CMExtension

Definitions

NameCategoryTheorems
equivMaximalRealSubfield πŸ“–CompOp
2 mathmath: algebraMap_equivMaximalRealSubfield_symm_apply, equivMaximalRealSubfield_apply

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_equivMaximalRealSubfield_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
RingEquiv
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Subfield.toField
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
equivMaximalRealSubfield
SubsemiringClass.toCommSemiring
SubringClass.toSubsemiringClass
DivisionRing.toRing
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
Subfield.toAlgebra
β€”commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
RingEquiv.apply_symm_apply
equivMaximalRealSubfield_apply
eq_maximalRealSubfield πŸ“–mathematicalβ€”NumberField.maximalRealSubfieldβ€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
commRing_strongRankCondition
SubsemiringClass.nontrivial
IsLocalRing.toNontrivial
Field.instIsLocalRing
le_antisymm
NumberField.IsTotallyReal.le_maximalRealSubfield
le_sup_left
Subtype.prop
IsSimpleOrder.eq_bot_or_eq_top
IntermediateField.isSimpleOrder_of_finrank_prime
Nat.prime_two
Algebra.IsQuadraticExtension.finrank_eq_two
Mathlib.Tactic.Contrapose.contraposeβ‚„
sup_eq_left
SetLike.coe_set_eq
Subfield.coe_toIntermediateField
IntermediateField.coe_bot
Set.ext
Algebra.IsAlgebraic.tower_top
SubsemiringClass.instCharZero
IsScalarTower.rat
Algebra.IsSeparable.isAlgebraic
Rat.nontrivial
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsSeparable.of_integral
instIsDomain
Rat.instCharZero
PerfectField.ofCharZero
NumberField.IsTotallyReal.ofRingEquiv
NumberField.isTotallyReal_sup
NumberField.isTotallyReal_maximalRealSubfield
NumberField.instNonemptyInfinitePlaceOfRingHomComplex
NumberField.Embeddings.instNonemptyRingHomOfIsAlgebraicRatOfIsAlgClosed
Complex.instCharZero
Complex.isAlgClosed
NumberField.InfinitePlace.not_isReal_iff_isComplex
NumberField.IsTotallyComplex.isComplex
NumberField.IsTotallyReal.isReal
equivMaximalRealSubfield_apply πŸ“–mathematicalβ€”Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Subfield.toField
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
equivMaximalRealSubfield
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
β€”commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing

NumberField.IsCMField

Definitions

NameCategoryTheorems
complexConj πŸ“–CompOp
12 mathmath: isConj_complexConj, zpowers_complexConj_eq_top, orderOf_complexConj, complexConj_apply_apply, coe_ringOfIntegersComplexConj, complexConj_apply_eq_self, complexEmbedding_complexConj, complexConj_eq_self_iff, RingOfIntegers.complexConj_eq_self_iff, infinitePlace_complexConj, complexConj_torsion, Units.complexConj_eq_self_iff
equivInfinitePlace πŸ“–CompOp
2 mathmath: equivInfinitePlace_symm_apply, equivInfinitePlace_apply
indexRealUnits πŸ“–CompOp
4 mathmath: regulator_div_regulator_eq_two_pow_mul_indexRealUnits_inv, indexRealUnits_mul_eq, indexRealUnits_eq_one_or_two, indexRealUnits_eq_two_iff
realFundSystem πŸ“–CompOp
2 mathmath: closure_realFundSystem_sup_torsion, regOfFamily_realFunSystem
realUnits πŸ“–CompOp
4 mathmath: closure_realFundSystem_sup_torsion, unitsMulComplexConjInv_ker, mem_realUnits_iff, unitsComplexConj_eq_self_iff
ringOfIntegersComplexConj πŸ“–CompOp
2 mathmath: coe_ringOfIntegersComplexConj, ringOfIntegersComplexConj_eq_self_iff
starRing πŸ“–CompOpβ€”
unitsComplexConj πŸ“–CompOp
3 mathmath: unitsComplexConj_torsion, unitsMulComplexConjInv_apply, unitsComplexConj_eq_self_iff
unitsMulComplexConjInv πŸ“–CompOp
7 mathmath: indexRealUnits_mul_eq, unitsMulComplexConjInv_apply_torsion, unitsMulComplexConjInv_ker, unitsMulComplexConjInv_apply, indexRealUnits_eq_two_iff, map_unitsMulComplexConjInv_torsion, index_unitsMulComplexConjInv_range_dvd

Theorems

NameKindAssumesProvesValidatesDepends On
card_infinitePlace_eq_card_infinitePlace πŸ“–mathematicalβ€”Fintype.card
NumberField.InfinitePlace
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
Subfield.toField
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
NumberField.of_subfield
β€”NumberField.of_subfield
NumberField.InfinitePlace.card_eq_nrRealPlaces_add_nrComplexPlaces
NumberField.IsTotallyComplex.nrRealPlaces_eq_zero
isTotallyComplex
NumberField.IsTotallyReal.nrComplexPlaces_eq_zero
NumberField.isTotallyReal_maximalRealSubfield
Algebra.IsSeparable.isAlgebraic
Rat.nontrivial
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsSeparable.of_integral
instIsDomain
Algebra.IsIntegral.of_finite
NumberField.to_finiteDimensional
Rat.instCharZero
PerfectField.ofCharZero
zero_add
add_zero
NumberField.to_charZero
NumberField.IsTotallyReal.finrank
Nat.instAtLeastTwoHAddOfNat
zero_lt_two
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
NumberField.IsTotallyComplex.finrank
SubsemiringClass.instCharZero
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
Module.finrank_mul_finrank
IsScalarTower.rat
commRing_strongRankCondition
SubsemiringClass.nontrivial
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.free_of_finite_type_torsion_free'
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
Rat.isDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
NumberField.instFiniteDimensional
mul_comm
Algebra.IsQuadraticExtension.finrank_eq_two
isQuadraticExtension
closure_realFundSystem_sup_torsion πŸ“–mathematicalβ€”Subgroup
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Units.instGroup
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Subgroup.instCompleteLattice
Subgroup.closure
Set.range
NumberField.Units.rank
realFundSystem
NumberField.Units.torsion
realUnits
β€”MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
MonoidHom.isOfFinOrder
realUnits.eq_1
MonoidHom.range_eq_map
NumberField.of_subfield
NumberField.Units.closure_fundSystem_sup_torsion_eq_top
Subgroup.map_sup
sup_assoc
RingHom.toMonoidHom_eq_coe
sup_eq_right
MonoidHom.map_closure
Set.ext
units_rank_eq_units_rank
Equiv.exists_congr_left
coe_ringOfIntegersComplexConj πŸ“–mathematicalβ€”NumberField.RingOfIntegers.val
DFunLike.coe
AlgEquiv
NumberField.RingOfIntegers
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
Subfield.toField
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
CommSemiring.toSemiring
NumberField.inst_ringOfIntegersAlgebra
Subfield.toAlgebra
AlgEquiv.instFunLike
ringOfIntegersComplexConj
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
complexConj
β€”β€”
complexConj_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subfield.toAlgebra
AlgEquiv.instFunLike
complexConj
β€”NumberField.Embeddings.instNonemptyRingHomOfIsAlgebraicRatOfIsAlgClosed
Complex.instCharZero
Algebra.IsSeparable.isAlgebraic
Rat.nontrivial
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsSeparable.of_integral
instIsDomain
Rat.instCharZero
PerfectField.ofCharZero
Complex.isAlgClosed
NumberField.ComplexEmbedding.isConj_apply_apply
isConj_complexConj
complexConj_apply_eq_self πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subfield.toAlgebra
AlgEquiv.instFunLike
complexConj
β€”AlgEquiv.commutes
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
complexConj_eq_self_iff πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subfield.toAlgebra
AlgEquiv.instFunLike
complexConj
β€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
zpowers_complexConj_eq_top
Subgroup.forall_mem_zpowers
MulAction.mem_fixedBy_zpowers_iff_mem_fixedBy
IsGalois.fixedField_top
Algebra.IsQuadraticExtension.isGalois
isQuadraticExtension
Algebra.IsAlgebraic.isSeparable_of_perfectField
Normal.toIsAlgebraic
Algebra.IsQuadraticExtension.normal
PerfectField.ofCharZero
SubsemiringClass.instCharZero
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
Algebra.instFiniteOfIsQuadraticExtension
commRing_strongRankCondition
SubsemiringClass.nontrivial
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Projective.of_free
Module.free_of_finite_type_torsion_free'
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
IntermediateField.mem_bot
IntermediateField.mem_fixedField_iff
complexConj_ne_one πŸ“–β€”β€”β€”β€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
NumberField.Embeddings.instNonemptyRingHomOfIsAlgebraicRatOfIsAlgClosed
Complex.instCharZero
Algebra.IsSeparable.isAlgebraic
Rat.nontrivial
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsSeparable.of_integral
instIsDomain
Rat.instCharZero
PerfectField.ofCharZero
Complex.isAlgClosed
exists_isConj
NumberField.ComplexEmbedding.isConj_ne_one_iff
NumberField.IsTotallyComplex.complexEmbedding_not_isReal
isTotallyComplex
complexConj_torsion πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subfield.toAlgebra
AlgEquiv.instFunLike
complexConj
Algebra.IsAlgebraic.isIntegral
Rat.instField
DivisionRing.toRatAlgebra
Algebra.IsSeparable.isAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Rat.nontrivial
Algebra.IsSeparable.of_integral
instIsDomain
Algebra.IsIntegral.of_finite
NumberField.to_finiteDimensional
Rat.instCharZero
RingHom
NumberField.RingOfIntegers
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
RingHom.instFunLike
algebraMap
NumberField.RingOfIntegers.instAlgebra_1
Algebra.id
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Units
Subgroup
Units.instGroup
Subgroup.instSetLike
NumberField.Units.torsion
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
β€”NumberField.Embeddings.instNonemptyRingHom
Complex.instCharZero
Complex.isAlgClosed
RingHom.injective
DivisionRing.isSimpleRing
Complex.instNontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
Algebra.IsAlgebraic.isIntegral
Algebra.IsSeparable.isAlgebraic
Rat.nontrivial
Algebra.IsSeparable.of_integral
instIsDomain
Algebra.IsIntegral.of_finite
NumberField.to_finiteDimensional
Rat.instCharZero
complexEmbedding_complexConj
NumberField.Units.complexEmbedding_apply
Complex.conj_rootsOfUnity
NumberField.Units.instNeZeroNatTorsionOrder
Subgroup.apply_coe_mem_map
NumberField.Units.map_complexEmbedding_torsion
Units.val_inv_eq_inv_val
map_invβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
complexEmbedding_complexConj πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
RingHom.instFunLike
AlgEquiv
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
SubringClass.toSubsemiringClass
DivisionRing.toRing
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
Subfield.toAlgebra
AlgEquiv.instFunLike
complexConj
CommSemiring.toSemiring
Complex.instCommSemiring
starRingEnd
Complex.instStarRing
β€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
NumberField.ComplexEmbedding.IsConj.eq
isConj_complexConj
RCLike.star_def
equivInfinitePlace_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
NumberField.InfinitePlace
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
Subfield.toField
EquivLike.toFunLike
Equiv.instEquivLike
equivInfinitePlace
NumberField.InfinitePlace.comap
algebraMap
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subfield.toAlgebra
β€”β€”
equivInfinitePlace_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
NumberField.InfinitePlace
Real
NumberField.InfinitePlace.instFunLikeReal
Equiv
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
Subfield.toField
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivInfinitePlace
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
Subfield.toAlgebra
β€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
NumberField.InfinitePlace.comap_apply
equivInfinitePlace_apply
Equiv.apply_symm_apply
exists_isConj πŸ“–mathematicalβ€”NumberField.ComplexEmbedding.IsConj
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
Subfield.toField
Subfield.toAlgebra
β€”NumberField.InfinitePlace.exists_isConj_of_isRamified
Algebra.IsQuadraticExtension.isGalois
isQuadraticExtension
Algebra.IsAlgebraic.isSeparable_of_perfectField
Normal.toIsAlgebraic
Algebra.IsQuadraticExtension.normal
PerfectField.ofCharZero
SubsemiringClass.instCharZero
SubringClass.toSubsemiringClass
NumberField.InfinitePlace.isRamified_iff
NumberField.IsTotallyComplex.isComplex
isTotallyComplex
NumberField.IsTotallyReal.isReal
NumberField.isTotallyReal_maximalRealSubfield
indexRealUnits_eq_one_or_two πŸ“–mathematicalβ€”indexRealUnitsβ€”indexRealUnits_mul_eq
Nat.dvd_prime
Nat.prime_two
index_unitsMulComplexConjInv_range_dvd
mul_one
two_ne_zero
indexRealUnits_eq_two_iff πŸ“–mathematicalβ€”indexRealUnits
Subgroup.zpowers
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
NumberField.Units.torsion
Subgroup.toGroup
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Units.instMulOneClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
unitsMulComplexConjInv
Top.top
Subgroup.instTop
β€”Subgroup.index_eq_one
top_le_iff
MonoidHom.map_zpowers
Subgroup.map_le_range
exists_zpow_surjective
NumberField.Units.instIsCyclicSubtypeUnitsRingOfIntegersMemSubgroupTorsion
MonoidHom.range_eq_top
Subgroup.eq_top_iff'
indexRealUnits_mul_eq
two_ne_zero
mul_one
indexRealUnits_mul_eq πŸ“–mathematicalβ€”indexRealUnits
Subgroup.index
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
NumberField.Units.torsion
Subgroup.toGroup
MonoidHom.range
unitsMulComplexConjInv
β€”indexRealUnits.eq_1
sup_comm
unitsMulComplexConjInv_ker
map_unitsMulComplexConjInv_torsion
IsCyclic.index_powMonoidHom_range
NumberField.Units.instIsCyclicSubtypeUnitsRingOfIntegersMemSubgroupTorsion
Finite.of_fintype
Nat.card_eq_fintype_card
Nat.instAtLeastTwoHAddOfNat
even_iff_two_dvd
NumberField.Units.even_torsionOrder
Subgroup.index_map
index_unitsMulComplexConjInv_range_dvd πŸ“–mathematicalβ€”Subgroup.index
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
NumberField.Units.torsion
Subgroup.toGroup
MonoidHom.range
unitsMulComplexConjInv
β€”IsCyclic.index_powMonoidHom_range
NumberField.Units.instIsCyclicSubtypeUnitsRingOfIntegersMemSubgroupTorsion
Finite.of_fintype
Nat.card_eq_fintype_card
Even.two_dvd
NumberField.Units.even_torsionOrder
Subgroup.index_dvd_of_le
unitsMulComplexConjInv_apply_torsion
pow_two
infinitePlace_complexConj πŸ“–mathematicalβ€”DFunLike.coe
NumberField.InfinitePlace
Real
NumberField.InfinitePlace.instFunLikeReal
AlgEquiv
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subfield.toAlgebra
AlgEquiv.instFunLike
complexConj
β€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
NumberField.InfinitePlace.norm_embedding_eq
complexEmbedding_complexConj
Complex.norm_conj
isConj_complexConj πŸ“–mathematicalβ€”NumberField.ComplexEmbedding.IsConj
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
Subfield.toField
Subfield.toAlgebra
complexConj
β€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
exists_isConj
Algebra.IsSeparable.isAlgebraic
Rat.nontrivial
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsSeparable.of_integral
instIsDomain
Rat.instCharZero
PerfectField.ofCharZero
NumberField.Embeddings.instNonemptyRingHomOfIsAlgebraicRatOfIsAlgClosed
Complex.instCharZero
Complex.isAlgClosed
isConj_eq_isConj
isConj_eq_isConj πŸ“–β€”NumberField.ComplexEmbedding.IsConj
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
Subfield.toField
Subfield.toAlgebra
β€”β€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
IsGalois.card_aut_eq_finrank
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
Algebra.instFiniteOfIsQuadraticExtension
commRing_strongRankCondition
SubsemiringClass.nontrivial
IsLocalRing.toNontrivial
Field.instIsLocalRing
isQuadraticExtension
Module.Projective.of_free
Module.free_of_finite_type_torsion_free'
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Algebra.IsQuadraticExtension.isGalois
Algebra.IsAlgebraic.isSeparable_of_perfectField
Normal.toIsAlgebraic
Algebra.IsQuadraticExtension.normal
PerfectField.ofCharZero
SubsemiringClass.instCharZero
Algebra.IsQuadraticExtension.finrank_eq_two
ExistsUnique.unique
Algebra.IsQuadraticExtension.isMulCommutative_galoisGroup
Nat.card_eq_two_iff'
NumberField.ComplexEmbedding.isConj_ne_one_iff
NumberField.IsTotallyComplex.complexEmbedding_not_isReal
isTotallyComplex
isQuadraticExtension πŸ“–mathematicalβ€”Algebra.IsQuadraticExtension
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
commRing_strongRankCondition
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Subfield.toField
SubsemiringClass.nontrivial
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IsLocalRing.toNontrivial
Field.instIsLocalRing
Subfield.toAlgebra
β€”is_quadratic
isTotallyComplex πŸ“–mathematicalβ€”NumberField.IsTotallyComplexβ€”to_isTotallyComplex
is_quadratic πŸ“–mathematicalβ€”Algebra.IsQuadraticExtension
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
commRing_strongRankCondition
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Subfield.toField
SubsemiringClass.nontrivial
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IsLocalRing.toNontrivial
Field.instIsLocalRing
Subfield.toAlgebra
β€”β€”
map_unitsMulComplexConjInv_torsion πŸ“–mathematicalβ€”Subgroup.map
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Units.instGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
NumberField.Units.torsion
Subgroup.toGroup
unitsMulComplexConjInv
MonoidHom.range
powMonoidHom
CommGroup.toCommMonoid
Subgroup.toCommGroup
Units.instCommGroupUnits
CommRing.toCommMonoid
β€”SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
MonoidHom.restrict_range
MonoidHom.ext
unitsMulComplexConjInv_apply_torsion
mem_realUnits_iff πŸ“–mathematicalβ€”Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
realUnits
DFunLike.coe
RingHom
Subfield
Field.toDivisionRing
Subfield.instSetLike
NumberField.maximalRealSubfield
Subfield.toField
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
NumberField.inst_ringOfIntegersAlgebra
Subfield.toAlgebra
Units.val
β€”MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
ofCMExtension πŸ“–mathematicalβ€”NumberField.IsCMFieldβ€”commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
SubsemiringClass.nontrivial
Module.Free.of_divisionRing
Algebra.finrank_eq_of_equiv_equiv
RingHom.ext
NumberField.CMExtension.algebraMap_equivMaximalRealSubfield_symm_apply
RingHomCompTriple.comp_eq
RingHomCompTriple.right_ids
Algebra.IsQuadraticExtension.finrank_eq_two
of_forall_isConj πŸ“–mathematicalNumberField.ComplexEmbedding.IsConj
Rat.instField
DivisionRing.toRatAlgebra
Field.toDivisionRing
NumberField.IsCMFieldβ€”NumberField.Embeddings.instNonemptyRingHomOfIsAlgebraicRatOfIsAlgClosed
Complex.instCharZero
Algebra.IsSeparable.isAlgebraic
Rat.nontrivial
Algebra.IsAlgebraic.isSeparable_of_perfectField
IsGalois.to_isSeparable
PerfectField.ofCharZero
Rat.instCharZero
Complex.isAlgClosed
Nat.card_zpowers
NumberField.ComplexEmbedding.orderOf_isConj_two_of_ne_one
NumberField.ComplexEmbedding.isConj_ne_one_iff
NumberField.IsTotallyComplex.complexEmbedding_not_isReal
Nat.finite_of_card_ne_zero
ne_of_gt
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Subgroup.smulCommClass_left
AlgEquiv.apply_smulCommClass'
IsScalarTower.rat
NumberField.InfinitePlace.comap_surjective
IntermediateField.isAlgebraic_tower_top
NumberField.InfinitePlace.mk_embedding
NumberField.InfinitePlace.isReal_mk_iff
NumberField.ComplexEmbedding.IsConj.isReal_comp
IsGaloisGroup.subgroup
IsGaloisGroup.of_isGalois
Subgroup.mem_zpowers
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
commRing_strongRankCondition
SubsemiringClass.nontrivial
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Free.of_divisionRing
IsGaloisGroup.commutes
IsGaloisGroup.finrank_fixedPoints_eq_card_subgroup
ofCMExtension
of_isAbelianGalois πŸ“–mathematicalβ€”NumberField.IsCMFieldβ€”NumberField.Embeddings.instNonemptyRingHomOfIsAlgebraicRatOfIsAlgClosed
Complex.instCharZero
Algebra.IsSeparable.isAlgebraic
Rat.nontrivial
Algebra.IsAlgebraic.isSeparable_of_perfectField
IsGalois.to_isSeparable
IsAbelianGalois.toIsGalois
PerfectField.ofCharZero
Rat.instCharZero
Complex.isAlgClosed
NumberField.InfinitePlace.exists_isConj_of_isRamified
NumberField.InfinitePlace.isRamified_iff
NumberField.IsTotallyComplex.isComplex
NumberField.IsTotallyReal.isReal
NumberField.instIsTotallyRealRat
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
NumberField.ComplexEmbedding.exists_comp_symm_eq_of_comp_eq
RingHom.ext
eq_ratCast
RingHom.instRingHomClass
IsAbelianGalois.toIsMulCommutative
inv_mul_cancel_comm
NumberField.ComplexEmbedding.IsConj.comp
of_forall_isConj
orderOf_complexConj πŸ“–mathematicalβ€”orderOf
AlgEquiv
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subfield.toAlgebra
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
complexConj
β€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
orderOf_eq_prime_iff
Nat.fact_prime_two
AlgEquiv.ext
AlgEquiv.coe_pow
Function.iterate_one
complexConj_apply_apply
complexConj_ne_one
regOfFamily_realFunSystem πŸ“–mathematicalβ€”NumberField.Units.regOfFamily
realFundSystem
Real
Real.instMul
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
NumberField.Units.rank
NumberField.Units.regulator
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
Subfield.toField
NumberField.of_subfield
β€”NumberField.of_subfield
not_iff_not
Equiv.eq_symm_apply
units_rank_eq_units_rank
Nat.instAtLeastTwoHAddOfNat
Finset.prod_const
abs_pow
Real.instIsOrderedRing
abs_of_pos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
zero_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
NumberField.Units.rank.eq_1
Fintype.card_subtype_compl
Fintype.card_unique
NumberField.Units.regulator_eq_regOfFamily_fundSystem
NumberField.Units.regOfFamily_eq_det
NumberField.Units.regOfFamily_eq_det'
abs_mul
Matrix.det_mul_column
Matrix.det_reindex_self
Matrix.reindex_apply
Matrix.ext
Matrix.submatrix_apply
Matrix.of_apply
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
equivInfinitePlace_symm_apply
NumberField.IsTotallyComplex.mult_eq
isTotallyComplex
Equiv.apply_symm_apply
Subtype.coe_eta
NumberField.IsTotallyReal.mult_eq
NumberField.isTotallyReal_maximalRealSubfield
Algebra.IsSeparable.isAlgebraic
Rat.nontrivial
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsSeparable.of_integral
instIsDomain
Algebra.IsIntegral.of_finite
NumberField.to_finiteDimensional
Rat.instCharZero
PerfectField.ofCharZero
Nat.cast_one
one_mul
regulator_div_regulator_eq_two_pow_mul_indexRealUnits_inv πŸ“–mathematicalβ€”Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
NumberField.Units.regulator
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
Subfield.toField
NumberField.of_subfield
Real.instMul
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
NumberField.Units.rank
Real.instInv
indexRealUnits
β€”NumberField.of_subfield
Nat.instAtLeastTwoHAddOfNat
indexRealUnits.eq_1
closure_realFundSystem_sup_torsion
NumberField.Units.regOfFamily_div_regulator
regOfFamily_realFunSystem
inv_div
mul_div_assoc
mul_div_mul_comm
div_self
ne_of_gt
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
one_mul
ringOfIntegersComplexConj_eq_self_iff πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
NumberField.RingOfIntegers
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
Subfield.toField
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
CommSemiring.toSemiring
NumberField.inst_ringOfIntegersAlgebra
Subfield.toAlgebra
AlgEquiv.instFunLike
ringOfIntegersComplexConj
Set
Set.instMembership
Set.range
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
RingOfIntegers.complexConj_eq_self_iff
coe_ringOfIntegersComplexConj
NumberField.RingOfIntegers.ext_iff
AlgEquiv.commutes
to_isTotallyComplex πŸ“–mathematicalβ€”NumberField.IsTotallyComplexβ€”β€”
unitsComplexConj_eq_self_iff πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Units.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
unitsComplexConj
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
realUnits
β€”AlgEquivClass.toRingEquivClass
AlgEquiv.instAlgEquivClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
IsScalarTower.algebraMap_apply
NumberField.RingOfIntegers.instIsScalarTower_1
unitsComplexConj_torsion πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Units.instMul
EquivLike.toFunLike
MulEquiv.instEquivLike
unitsComplexConj
Algebra.IsAlgebraic.isIntegral
Rat.instField
DivisionRing.toRing
Field.toDivisionRing
DivisionRing.toRatAlgebra
Algebra.IsSeparable.isAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Rat.nontrivial
Algebra.IsSeparable.of_integral
instIsDomain
Field.toSemifield
Algebra.IsIntegral.of_finite
NumberField.to_finiteDimensional
Rat.instCharZero
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
NumberField.Units.torsion
Subgroup.inv
β€”NumberField.Units.coe_injective
Algebra.IsAlgebraic.isIntegral
Algebra.IsSeparable.isAlgebraic
Rat.nontrivial
Algebra.IsSeparable.of_integral
instIsDomain
Algebra.IsIntegral.of_finite
NumberField.to_finiteDimensional
Rat.instCharZero
complexConj_torsion
map_units_inv
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
unitsMulComplexConjInv_apply πŸ“–mathematicalβ€”Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
NumberField.Units.torsion
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Units.instMulOneClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MonoidHom.instFunLike
unitsMulComplexConjInv
Units.instMul
Units.instInv
MulEquiv
EquivLike.toFunLike
MulEquiv.instEquivLike
unitsComplexConj
Algebra.IsAlgebraic.isIntegral
Rat.instField
DivisionRing.toRing
Field.toDivisionRing
DivisionRing.toRatAlgebra
Algebra.IsSeparable.isAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Rat.nontrivial
Algebra.IsSeparable.of_integral
instIsDomain
Field.toSemifield
Algebra.IsIntegral.of_finite
NumberField.to_finiteDimensional
Rat.instCharZero
β€”β€”
unitsMulComplexConjInv_apply_torsion πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
NumberField.Units.torsion
MulOneClass.toMulOne
Units.instMulOneClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MonoidHom.instFunLike
unitsMulComplexConjInv
Monoid.toNatPow
β€”Algebra.IsAlgebraic.isIntegral
Algebra.IsSeparable.isAlgebraic
Rat.nontrivial
Algebra.IsSeparable.of_integral
instIsDomain
Algebra.IsIntegral.of_finite
NumberField.to_finiteDimensional
Rat.instCharZero
unitsComplexConj_torsion
inv_inv
pow_two
unitsMulComplexConjInv_ker πŸ“–mathematicalβ€”MonoidHom.ker
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Units.instGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
NumberField.Units.torsion
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
unitsMulComplexConjInv
realUnits
β€”Subgroup.ext
MonoidHom.mem_ker
Algebra.IsAlgebraic.isIntegral
Algebra.IsSeparable.isAlgebraic
Rat.nontrivial
Algebra.IsSeparable.of_integral
instIsDomain
Algebra.IsIntegral.of_finite
NumberField.to_finiteDimensional
Rat.instCharZero
unitsMulComplexConjInv_apply
Subgroup.instSubgroupClass
OneMemClass.coe_one
mul_inv_eq_one
unitsComplexConj_eq_self_iff
units_rank_eq_units_rank πŸ“–mathematicalβ€”NumberField.Units.rank
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
Subfield.toField
NumberField.of_subfield
β€”NumberField.of_subfield
NumberField.Units.rank.eq_1
card_infinitePlace_eq_card_infinitePlace
zpowers_complexConj_eq_top πŸ“–mathematicalβ€”Subgroup.zpowers
AlgEquiv
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subfield.toAlgebra
AlgEquiv.aut
complexConj
Top.top
Subgroup
Subgroup.instTop
β€”Subgroup.eq_top_of_card_eq
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
Subgroup.instFiniteSubtypeMem
Finite.algEquiv
Finite.algHom
Module.free_of_finite_type_torsion_free'
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
instIsDomain
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
Algebra.instFiniteOfIsQuadraticExtension
commRing_strongRankCondition
SubsemiringClass.nontrivial
IsLocalRing.toNontrivial
Field.instIsLocalRing
isQuadraticExtension
Module.Projective.of_free
Algebra.IsQuadraticExtension.toFree
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Nat.card_zpowers
orderOf_complexConj
IsGalois.card_aut_eq_finrank
Algebra.IsQuadraticExtension.isGalois
Algebra.IsAlgebraic.isSeparable_of_perfectField
Normal.toIsAlgebraic
Algebra.IsQuadraticExtension.normal
PerfectField.ofCharZero
SubsemiringClass.instCharZero
Algebra.IsQuadraticExtension.finrank_eq_two

NumberField.IsCMField.NumberField.CMExtension

Theorems

NameKindAssumesProvesValidatesDepends On
of_isMulCommutative πŸ“–mathematicalβ€”NumberField.IsCMFieldβ€”NumberField.IsCMField.of_isAbelianGalois

NumberField.IsCMField.RingOfIntegers

Theorems

NameKindAssumesProvesValidatesDepends On
complexConj_eq_self_iff πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subfield.toAlgebra
AlgEquiv.instFunLike
NumberField.IsCMField.complexConj
NumberField.RingOfIntegers.val
RingHom
NumberField.RingOfIntegers
Subfield.toField
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
RingHom.instFunLike
algebraMap
NumberField.RingOfIntegers.instAlgebra_1
β€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
NumberField.IsCMField.complexConj_eq_self_iff
isIntegral_algebraMap_iff
AddCommGroup.intIsScalarTower
FaithfulSMul.algebraMap_injective
Subfield.instFaithfulSMulSubtypeMem
instFaithfulSMul_1
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
NumberField.RingOfIntegers.isIntegral_coe
IsScalarTower.algebraMap_apply
NumberField.RingOfIntegers.instIsScalarTower
SetLike.coe_mem

NumberField.IsCMField.Units

Theorems

NameKindAssumesProvesValidatesDepends On
complexConj_eq_self_iff πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
NumberField.maximalRealSubfield
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subfield.toAlgebra
AlgEquiv.instFunLike
NumberField.IsCMField.complexConj
RingHom
NumberField.RingOfIntegers
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
RingHom.instFunLike
algebraMap
NumberField.RingOfIntegers.instAlgebra_1
Algebra.id
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Subfield.toField
β€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
NumberField.IsCMField.RingOfIntegers.complexConj_eq_self_iff
NumberField.Units.coe_coe
IsUnit.of_map
Algebra.IsIntegral.isLocalHom
NumberField.RingOfIntegers.extension_algebra_isIntegral
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
NumberField.RingOfIntegers.instIsDomain
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instIsTorsionFree_1
NumberField.RingOfIntegers.ext
Units.isUnit

---

← Back to Index