| Name | Category | Theorems |
complexConj π | CompOp | 12 mathmath: isConj_complexConj, zpowers_complexConj_eq_top, orderOf_complexConj, complexConj_apply_apply, coe_ringOfIntegersComplexConj, complexConj_apply_eq_self, complexEmbedding_complexConj, complexConj_eq_self_iff, RingOfIntegers.complexConj_eq_self_iff, infinitePlace_complexConj, complexConj_torsion, Units.complexConj_eq_self_iff
|
equivInfinitePlace π | CompOp | 2 mathmath: equivInfinitePlace_symm_apply, equivInfinitePlace_apply
|
indexRealUnits π | CompOp | 4 mathmath: regulator_div_regulator_eq_two_pow_mul_indexRealUnits_inv, indexRealUnits_mul_eq, indexRealUnits_eq_one_or_two, indexRealUnits_eq_two_iff
|
realFundSystem π | CompOp | 2 mathmath: closure_realFundSystem_sup_torsion, regOfFamily_realFunSystem
|
realUnits π | CompOp | 4 mathmath: closure_realFundSystem_sup_torsion, unitsMulComplexConjInv_ker, mem_realUnits_iff, unitsComplexConj_eq_self_iff
|
ringOfIntegersComplexConj π | CompOp | 2 mathmath: coe_ringOfIntegersComplexConj, ringOfIntegersComplexConj_eq_self_iff
|
starRing π | CompOp | β |
unitsComplexConj π | CompOp | 3 mathmath: unitsComplexConj_torsion, unitsMulComplexConjInv_apply, unitsComplexConj_eq_self_iff
|
unitsMulComplexConjInv π | CompOp | 7 mathmath: indexRealUnits_mul_eq, unitsMulComplexConjInv_apply_torsion, unitsMulComplexConjInv_ker, unitsMulComplexConjInv_apply, indexRealUnits_eq_two_iff, map_unitsMulComplexConjInv_torsion, index_unitsMulComplexConjInv_range_dvd
|