Documentation Verification Report

ConvexBody

πŸ“ Source: Mathlib/NumberTheory/NumberField/CanonicalEmbedding/ConvexBody.lean

Statistics

MetricCount
DefinitionsConvexBody, convexBodyLT, convexBodyLT', convexBodyLT'Factor, convexBodyLTFactor, convexBodySum, convexBodySumFactor, convexBodySumFun, minkowskiBound
9
Theoremsadjust_f, convexBodyLT'Factor_ne_zero, convexBodyLT'_convex, convexBodyLT'_mem, convexBodyLT'_neg_mem, convexBodyLT'_volume, convexBodyLTFactor_ne_zero, convexBodyLT_convex, convexBodyLT_mem, convexBodyLT_neg_mem, convexBodyLT_volume, convexBodySumFactor_ne_zero, convexBodySumFun_add_le, convexBodySumFun_apply, convexBodySumFun_apply', convexBodySumFun_continuous, convexBodySumFun_eq_zero_iff, convexBodySumFun_neg, convexBodySumFun_nonneg, convexBodySumFun_smul, convexBodySum_compact, convexBodySum_convex, convexBodySum_isBounded, convexBodySum_mem, convexBodySum_neg_mem, convexBodySum_volume, convexBodySum_volume_eq_zero_of_le_zero, exists_ne_zero_mem_ideal_lt, exists_ne_zero_mem_ideal_lt', exists_ne_zero_mem_ideal_of_norm_le, exists_ne_zero_mem_ringOfIntegers_lt, exists_ne_zero_mem_ringOfIntegers_lt', exists_ne_zero_mem_ringOfIntegers_of_norm_le, exists_primitive_element_lt_of_isComplex, exists_primitive_element_lt_of_isReal, minkowskiBound_lt_top, minkowskiBound_pos, norm_le_convexBodySumFun, one_le_convexBodyLT'Factor, one_le_convexBodyLTFactor, volume_fundamentalDomain_fractionalIdealLatticeBasis
41
Total50

NumberField.mixedEmbedding

Definitions

NameCategoryTheorems
convexBodyLT πŸ“–CompOp
3 mathmath: convexBodyLT_volume, convexBodyLT_mem, convexBodyLT_convex
convexBodyLT' πŸ“–CompOp
3 mathmath: convexBodyLT'_mem, convexBodyLT'_volume, convexBodyLT'_convex
convexBodyLT'Factor πŸ“–CompOp
2 mathmath: convexBodyLT'_volume, one_le_convexBodyLT'Factor
convexBodyLTFactor πŸ“–CompOp
2 mathmath: one_le_convexBodyLTFactor, convexBodyLT_volume
convexBodySum πŸ“–CompOp
6 mathmath: convexBodySum_volume_eq_zero_of_le_zero, convexBodySum_compact, convexBodySum_isBounded, convexBodySum_convex, convexBodySum_volume, convexBodySum_mem
convexBodySumFactor πŸ“–CompOp
1 mathmath: convexBodySum_volume
convexBodySumFun πŸ“–CompOp
9 mathmath: convexBodySumFun_add_le, norm_le_convexBodySumFun, convexBodySumFun_apply', convexBodySumFun_apply, convexBodySumFun_smul, convexBodySumFun_neg, convexBodySumFun_continuous, convexBodySumFun_nonneg, convexBodySumFun_eq_zero_iff
minkowskiBound πŸ“–CompOp
3 mathmath: NumberField.hermiteTheorem.minkowskiBound_lt_boundOfDiscBdd, minkowskiBound_lt_top, minkowskiBound_pos

Theorems

NameKindAssumesProvesValidatesDepends On
adjust_f πŸ“–mathematicalβ€”Finset.prod
NumberField.InfinitePlace
NNReal
CommSemiring.toCommMonoid
instCommSemiringNNReal
Finset.univ
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
NumberField.InfinitePlace.mult
β€”Function.update_of_ne
Finset.mul_prod_erase
Finset.mem_univ
Function.update_self
Finset.prod_congr
Finset.ne_of_mem_erase
NNReal.rpow_natCast
NNReal.rpow_mul
inv_mul_cancelβ‚€
NumberField.InfinitePlace.mult.eq_1
Mathlib.Meta.NormNum.isNat_eq_false
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
NNReal.rpow_one
mul_assoc
Finset.prod_ne_zero_iff
NNReal.instNoZeroDivisors
pow_ne_zero
isReduced_of_noZeroDivisors
mul_one
convexBodyLT'Factor_ne_zero πŸ“–β€”β€”β€”β€”mul_ne_zero
NNReal.instNoZeroDivisors
pow_ne_zero
isReduced_of_noZeroDivisors
two_ne_zero
CharZero.NeZero.two
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing
NNReal.pi_ne_zero
convexBodyLT'_convex πŸ“–mathematicalβ€”Convex
Real
mixedSpace
Real.semiring
Real.partialOrder
Prod.instAddCommMonoid
Pi.addCommMonoid
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real.instAddCommMonoid
NumberField.InfinitePlace.IsComplex
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Prod.instSMul
Function.hasSMul
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
Real.normedField
Ring.toSemiring
SeminormedRing.toRing
NormedAlgebra.toAlgebra
RCLike.toNormedAlgebra
Complex.instRCLike
convexBodyLT'
β€”Convex.prod
convex_pi
convex_ball
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Convex.inter
convex_halfSpace_re_gt
convex_halfSpace_re_lt
convex_halfSpace_im_gt
convex_halfSpace_im_lt
convexBodyLT'_mem πŸ“–mathematicalβ€”mixedSpace
Set
Set.instMembership
convexBodyLT'
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Prod.instNonAssocSemiring
Pi.nonAssocSemiring
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
RingHom.instFunLike
NumberField.mixedEmbedding
Real.instLT
NumberField.InfinitePlace.instFunLikeReal
NNReal.toReal
abs
Real.lattice
Real.instAddGroup
Complex.re
NumberField.InfinitePlace.embedding
Real.instOne
Complex.im
Monoid.toNatPow
Real.instMonoid
β€”NumberField.InfinitePlace.embedding_of_isReal_apply
NumberField.InfinitePlace.norm_embedding_eq
NumberField.InfinitePlace.not_isReal_iff_isComplex
Subtype.coe_ne_coe
mem_ball_zero_iff
Set.mem_setOf_eq
Subtype.prop
Subtype.coe_eta
NumberField.InfinitePlace.ne_of_isReal_isComplex
convexBodyLT'_neg_mem πŸ“–mathematicalmixedSpace
Set
Set.instMembership
convexBodyLT'
Prod.instNeg
Pi.instNeg
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.instNeg
NumberField.InfinitePlace.IsComplex
Complex
Complex.instNeg
β€”dist_zero_right
norm_neg
abs_neg
convexBodyLT'_volume πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
mixedSpace
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real
Real.measureSpace
NumberField.InfinitePlace.IsComplex
Complex
measureSpaceOfInnerProductSpace
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Complex.measurableSpace
Complex.borelSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
convexBodyLT'
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
convexBodyLT'Factor
Finset.prod
NNReal
CommSemiring.toCommMonoid
instCommSemiringNNReal
Finset.univ
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
NumberField.InfinitePlace.mult
β€”Complex.instFiniteDimensionalReal
Complex.borelSpace
Nat.instAtLeastTwoHAddOfNat
FiniteDimensional.rclike_to_real
MeasureTheory.MeasurePreserving.measure_preimage
MeasureTheory.MeasurePreserving.symm
Complex.volume_preserving_equiv_real_prod
MeasurableSet.nullMeasurableSet
MeasurableSet.inter
measurableSet_lt
BorelSpace.opensMeasurable
Real.borelSpace
instSecondCountableTopologyReal
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Measurable.comp
measurable_norm
Complex.measurable_re
measurable_const
Complex.measurable_im
Set.ext
IsOrderedAddMonoid.toAddLeftMono
covariant_swap_add_of_covariant_add
MeasureTheory.Measure.prod_prod
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.Measure.IsAddHaarMeasure.sigmaFinite
instIsAddHaarMeasureVolume
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
instIsTopologicalAddGroupReal
TopologicalSpace.SecondCountableTopology.to_separableSpace
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
Real.volume_Ioo
sub_neg_eq_add
one_add_one_eq_two
ENNReal.ofReal_mul
zero_le_two
Real.instZeroLEOneClass
ENNReal.ofReal_pow
NNReal.coe_nonneg
ENNReal.ofReal_ofNat
ENNReal.ofReal_coe_nnreal
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
MeasureTheory.Measure.instSigmaFiniteForallVolume
SeminormedAddCommGroup.toIsTopologicalAddGroup
secondCountable_of_proper
Complex.instProperSpace
MeasureTheory.Measure.pi_pi
Finset.prod_congr
Real.volume_ball
Finset.prod_erase_mul
Finset.mem_univ
Finset.ne_of_mem_erase
Complex.volume_ball
Real.instIsOrderedRing
Finset.prod_mul_distrib
Finset.prod_const
Finset.card_erase_of_mem
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
convexBodyLT'Factor.eq_1
pow_add
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
NumberField.InfinitePlace.prod_eq_prod_mul_prod
ENNReal.coe_finset_prod
NumberField.InfinitePlace.mult_isReal
NumberField.InfinitePlace.mult_isComplex
pow_one
mul_assoc
convexBodyLTFactor_ne_zero πŸ“–β€”β€”β€”β€”mul_ne_zero
NNReal.instNoZeroDivisors
pow_ne_zero
isReduced_of_noZeroDivisors
two_ne_zero
CharZero.NeZero.two
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing
NNReal.pi_ne_zero
convexBodyLT_convex πŸ“–mathematicalβ€”Convex
Real
mixedSpace
Real.semiring
Real.partialOrder
Prod.instAddCommMonoid
Pi.addCommMonoid
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real.instAddCommMonoid
NumberField.InfinitePlace.IsComplex
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Prod.instSMul
Function.hasSMul
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
Real.normedField
Ring.toSemiring
SeminormedRing.toRing
NormedAlgebra.toAlgebra
RCLike.toNormedAlgebra
Complex.instRCLike
convexBodyLT
β€”Convex.prod
convex_pi
convex_ball
convexBodyLT_mem πŸ“–mathematicalβ€”mixedSpace
Set
Set.instMembership
convexBodyLT
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Prod.instNonAssocSemiring
Pi.nonAssocSemiring
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
RingHom.instFunLike
NumberField.mixedEmbedding
Real.instLT
NumberField.InfinitePlace.instFunLikeReal
NNReal.toReal
β€”NumberField.InfinitePlace.embedding_of_isReal_apply
NumberField.InfinitePlace.norm_embedding_eq
convexBodyLT_neg_mem πŸ“–mathematicalmixedSpace
Set
Set.instMembership
convexBodyLT
Prod.instNeg
Pi.instNeg
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.instNeg
NumberField.InfinitePlace.IsComplex
Complex
Complex.instNeg
β€”norm_neg
convexBodyLT_volume πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
mixedSpace
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real
Real.measureSpace
NumberField.InfinitePlace.IsComplex
Complex
measureSpaceOfInnerProductSpace
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Complex.measurableSpace
Complex.borelSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
convexBodyLT
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
convexBodyLTFactor
Finset.prod
NNReal
CommSemiring.toCommMonoid
instCommSemiringNNReal
Finset.univ
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
NumberField.InfinitePlace.mult
β€”Complex.instFiniteDimensionalReal
Complex.borelSpace
Nat.instAtLeastTwoHAddOfNat
MeasureTheory.Measure.prod_prod
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.Measure.instSigmaFiniteForallVolume
MeasureTheory.Measure.IsAddHaarMeasure.sigmaFinite
instIsAddHaarMeasureVolume
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
SeminormedAddCommGroup.toIsTopologicalAddGroup
TopologicalSpace.SecondCountableTopology.to_separableSpace
secondCountable_of_proper
Complex.instProperSpace
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
MeasureTheory.Measure.pi_pi
FiniteDimensional.rclike_to_real
Real.borelSpace
instIsTopologicalAddGroupReal
instSecondCountableTopologyReal
instProperSpaceReal
Finset.prod_congr
Real.volume_ball
Complex.volume_ball
ENNReal.ofReal_mul
Real.instIsOrderedRing
Finset.prod_mul_distrib
Finset.prod_const
ENNReal.ofReal_ofNat
ENNReal.ofReal_coe_nnreal
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
NumberField.InfinitePlace.prod_eq_prod_mul_prod
ENNReal.coe_finset_prod
NumberField.InfinitePlace.mult_isReal
NumberField.InfinitePlace.mult_isComplex
pow_one
convexBodySumFactor_ne_zero πŸ“–β€”β€”β€”β€”div_ne_zero
NumberField.to_charZero
mul_ne_zero
NNReal.instNoZeroDivisors
pow_ne_zero
isReduced_of_noZeroDivisors
two_ne_zero
CharZero.NeZero.two
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing
NNReal.pi_ne_zero
Nat.cast_ne_zero
Nat.factorial_ne_zero
convexBodySumFun_add_le πŸ“–mathematicalβ€”Real
Real.instLE
convexBodySumFun
mixedSpace
Prod.instAdd
Pi.instAdd
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real.instAdd
NumberField.InfinitePlace.IsComplex
Complex
Complex.instAdd
β€”Finset.sum_congr
Distrib.leftDistribClass
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
normAtPlace_add_le
LT.lt.le
Nat.cast_pos
Real.instNontrivial
NumberField.InfinitePlace.mult_pos
convexBodySumFun_apply πŸ“–mathematicalβ€”convexBodySumFun
Finset.sum
NumberField.InfinitePlace
Real
Real.instAddCommMonoid
Finset.univ
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real.instMul
Real.instNatCast
NumberField.InfinitePlace.mult
DFunLike.coe
MonoidWithZeroHom
mixedSpace
Prod.instMulZeroOneClass
Pi.mulZeroOneClass
NumberField.InfinitePlace.IsReal
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
MonoidWithZeroHom.funLike
normAtPlace
β€”β€”
convexBodySumFun_apply' πŸ“–mathematicalβ€”convexBodySumFun
Real
Real.instAdd
Finset.sum
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real.instAddCommMonoid
Finset.univ
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Norm.norm
Real.norm
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
NumberField.InfinitePlace.IsComplex
Complex
Complex.instNorm
β€”Nat.instAtLeastTwoHAddOfNat
NumberField.InfinitePlace.sum_eq_sum_add_sum
Finset.sum_congr
NumberField.InfinitePlace.mult_isReal
NumberField.InfinitePlace.mult_isComplex
Nat.cast_one
one_mul
Subtype.prop
normAtPlace_apply_of_isReal
normAtPlace_apply_of_isComplex
Finset.mul_sum
convexBodySumFun_continuous πŸ“–mathematicalβ€”Continuous
mixedSpace
Real
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
Complex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
convexBodySumFun
β€”continuous_finset_sum
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Continuous.comp'
Continuous.fun_mul
IsTopologicalSemiring.toContinuousMul
continuous_const
continuous_id'
continuous_normAtPlace
convexBodySumFun_eq_zero_iff πŸ“–mathematicalβ€”convexBodySumFun
Real
Real.instZero
mixedSpace
Prod.instZero
Pi.instZero
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
NumberField.InfinitePlace.IsComplex
Complex
Complex.instZero
β€”forall_normAtPlace_eq_zero_iff
convexBodySumFun.eq_1
Finset.sum_eq_zero_iff_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
LT.lt.le
Nat.cast_pos
Real.instNontrivial
NumberField.InfinitePlace.mult_pos
normAtPlace_nonneg
mul_left_mem_nonZeroDivisors_eq_zero_iff
mem_nonZeroDivisors_iff_ne_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
NumberField.InfinitePlace.mult_coe_ne_zero
convexBodySumFun_neg πŸ“–mathematicalβ€”convexBodySumFun
mixedSpace
Prod.instNeg
Pi.instNeg
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.instNeg
NumberField.InfinitePlace.IsComplex
Complex
Complex.instNeg
β€”Finset.sum_congr
normAtPlace_neg
convexBodySumFun_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
convexBodySumFun
β€”Finset.sum_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
LT.lt.le
Nat.cast_pos
Real.instNontrivial
NumberField.InfinitePlace.mult_pos
normAtPlace_nonneg
convexBodySumFun_smul πŸ“–mathematicalβ€”convexBodySumFun
Real
mixedSpace
Prod.instSMul
Function.hasSMul
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
NumberField.InfinitePlace.IsComplex
Complex
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
Real.normedField
Ring.toSemiring
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
NormedAlgebra.toAlgebra
RCLike.toNormedAlgebra
Complex.instRCLike
Real.instMul
abs
Real.lattice
Real.instAddGroup
β€”Finset.sum_congr
normAtPlace_smul
mul_comm
Finset.mul_sum
mul_assoc
convexBodySum_compact πŸ“–mathematicalβ€”IsCompact
mixedSpace
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
Complex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
convexBodySum
β€”Metric.isCompact_iff_isClosed_bounded
Prod.t2Space
Pi.t2Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Complex.instT2Space
prod_properSpace
pi_properSpace
instProperSpaceReal
Complex.instProperSpace
Set.ext
IsClosed.preimage
convexBodySumFun_continuous
isClosed_Icc
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
convexBodySum_isBounded
convexBodySum_convex πŸ“–mathematicalβ€”Convex
Real
mixedSpace
Real.semiring
Real.partialOrder
Prod.instAddCommMonoid
Pi.addCommMonoid
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real.instAddCommMonoid
NumberField.InfinitePlace.IsComplex
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Prod.instSMul
Function.hasSMul
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
Real.normedField
Ring.toSemiring
SeminormedRing.toRing
NormedAlgebra.toAlgebra
RCLike.toNormedAlgebra
Complex.instRCLike
convexBodySum
β€”Convex_subadditive_le
Real.instIsOrderedRing
convexBodySumFun_add_le
abs_eq_self
Real.instIsOrderedAddMonoid
le_of_eq
convexBodySumFun_smul
convexBodySum_isBounded πŸ“–mathematicalβ€”Bornology.IsBounded
mixedSpace
Prod.instBornology
Pi.instBornology
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
PseudoMetricSpace.toBornology
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
Complex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
convexBodySum
β€”Metric.isBounded_iff
le_trans
norm_sub_le
add_le_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
norm_le_convexBodySumFun
convexBodySum_mem πŸ“–mathematicalβ€”mixedSpace
Set
Set.instMembership
convexBodySum
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Prod.instNonAssocSemiring
Pi.nonAssocSemiring
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
RingHom.instFunLike
NumberField.mixedEmbedding
Real.instLE
Finset.sum
Real.instAddCommMonoid
Finset.univ
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real.instMul
Real.instNatCast
NumberField.InfinitePlace.mult
AbsoluteValue
Real.partialOrder
AbsoluteValue.funLike
NumberField.place
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instNontrivial
β€”Complex.instNontrivial
Finset.sum_congr
normAtPlace_apply
convexBodySum_neg_mem πŸ“–mathematicalmixedSpace
Set
Set.instMembership
convexBodySum
Prod.instNeg
Pi.instNeg
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.instNeg
NumberField.InfinitePlace.IsComplex
Complex
Complex.instNeg
β€”Set.mem_setOf
convexBodySumFun_neg
convexBodySum_volume πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
mixedSpace
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real
Real.measureSpace
NumberField.InfinitePlace.IsComplex
Complex
measureSpaceOfInnerProductSpace
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Complex.measurableSpace
Complex.borelSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
convexBodySum
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
convexBodySumFactor
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
ENNReal.ofReal
Module.finrank
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
Field.toDivisionRing
NumberField.to_charZero
β€”Complex.instFiniteDimensionalReal
Complex.borelSpace
NumberField.to_charZero
le_or_gt
convexBodySum_volume_eq_zero_of_le_zero
ENNReal.ofReal_eq_zero
zero_pow
LT.lt.ne'
Module.finrank_pos
commRing_strongRankCondition
Rat.nontrivial
NumberField.to_finiteDimensional
Rat.isDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
IsLocalRing.toNontrivial
Field.instIsLocalRing
MulZeroClass.mul_zero
MeasureTheory.measure_le_eq_lt
Module.Finite.prod
FiniteDimensional.finiteDimensional_pi'
Subtype.finite
Finite.of_fintype
FiniteDimensional.rclike_to_real
Prod.instIsTopologicalAddGroup
Pi.topologicalAddGroup
instIsTopologicalAddGroupReal
SeminormedAddCommGroup.toIsTopologicalAddGroup
Prod.borelSpace
Pi.borelSpace
Subtype.countable
Finite.to_countable
instSecondCountableTopologyReal
Real.borelSpace
secondCountable_of_proper
Complex.instProperSpace
secondCountableTopologyEither_of_right
TopologicalSpace.instSecondCountableTopologyForallOfCountable
Prod.t2Space
Pi.t2Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Complex.instT2Space
Prod.continuousSMul
instContinuousSMulForall
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
instIsAddHaarMeasureMixedSpaceVolume
convexBodySumFun_eq_zero_iff
convexBodySumFun_neg
convexBodySumFun_add_le
le_of_eq
convexBodySumFun_smul
instNontrivialMixedSpace
MeasureTheory.measure_lt_one_eq_integral_div_gamma
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
finrank
div_one
Real.Gamma_nat_eq_factorial
ENNReal.ofReal_div_of_pos
Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
Nat.factorial_pos
Real.rpow_one
ENNReal.ofReal_natCast
Nat.instAtLeastTwoHAddOfNat
convexBodySumFun_apply'
neg_add
Finset.mul_sum
Real.exp_add
Real.exp_sum
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.Measure.instSigmaFiniteForallVolume
MeasureTheory.Measure.IsAddHaarMeasure.sigmaFinite
instIsAddHaarMeasureVolume
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
MeasureTheory.integral_fintype_prod_volume_eq_pow
integral_comp_abs
integral_exp_neg_rpow
Complex.integral_exp_neg_mul_rpow
le_rfl
zero_lt_two
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
one_add_one_eq_two
Real.Gamma_add_one
two_ne_zero
CharZero.NeZero.two
Real.Gamma_two
mul_one
mul_assoc
Real.rpow_add_one
Mathlib.Meta.NormNum.isInt_eq_true
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_one
Real.rpow_neg_one
div_eq_mul_inv
convexBodySumFactor.eq_1
ENNReal.ofReal_mul
le_of_lt
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
Mathlib.Meta.Positivity.pos_of_isNat
ENNReal.ofReal_pow
zero_le_two
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Real.pi_pos
ENNReal.ofReal_ofNat
NNReal.coe_real_pi
ENNReal.ofReal_coe_nnreal
ENNReal.coe_div
Nat.cast_ne_zero
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing
Nat.factorial_ne_zero
ENNReal.coe_mul
ENNReal.coe_pow
ENNReal.coe_ofNat
ENNReal.coe_natCast
mul_comm
Set.preimage_smul_invβ‚€
ne_of_gt
Finset.sum_congr
normAtPlace_smul
abs_inv
abs_eq_self
inv_mul_le_iffβ‚€
abs_pow
abs_nonneg
covariant_swap_add_of_covariant_add
MeasureTheory.Measure.addHaar_smul
PolishSpace.toSecondCountableTopology
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
Complex.instCompleteSpace
EMetric.instIsCountablyGeneratedUniformity
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
convexBodySum_volume_eq_zero_of_le_zero πŸ“–mathematicalReal
Real.instLE
Real.instZero
DFunLike.coe
MeasureTheory.Measure
mixedSpace
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real.measureSpace
NumberField.InfinitePlace.IsComplex
Complex
measureSpaceOfInnerProductSpace
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Complex.measurableSpace
Complex.borelSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
convexBodySum
instZeroENNReal
β€”Complex.instFiniteDimensionalReal
Complex.borelSpace
lt_or_eq_of_le
Set.ext
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Set.mem_setOf
convexBodySumFun_nonneg
MeasureTheory.measure_empty
MeasureTheory.Measure.instOuterMeasureClass
convexBodySum.eq_1
Set.mem_setOf_eq
Set.mem_singleton_iff
convexBodySumFun_eq_zero_iff
LE.le.ge_iff_eq'
MeasureTheory.NoAtoms.measure_singleton
instNoAtomsMixedSpaceVolume
exists_ne_zero_mem_ideal_lt πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
minkowskiBound
DFunLike.coe
MeasureTheory.Measure
mixedSpace
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real
Real.measureSpace
NumberField.InfinitePlace.IsComplex
Complex
measureSpaceOfInnerProductSpace
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Complex.measurableSpace
Complex.borelSpace
Set
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
convexBodyLT
FractionalIdeal
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
SetLike.instMembership
FractionalIdeal.instSetLike
Units.val
MonoidWithZero.toMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
FractionalIdeal.semifield
NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Real.instLT
NumberField.InfinitePlace.instFunLikeReal
NNReal.toReal
β€”NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Complex.instFiniteDimensionalReal
Complex.borelSpace
NumberField.instFreeIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule
ZSpan.isAddFundamentalDomain'
Finite.of_fintype
NumberField.instFiniteIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule
Prod.opensMeasurableSpace
Pi.opensMeasurableSpace
Subtype.countable
Finite.to_countable
instSecondCountableTopologyReal
BorelSpace.opensMeasurable
Real.borelSpace
PolishSpace.toSecondCountableTopology
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
secondCountable_of_proper
Complex.instProperSpace
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
Complex.instCompleteSpace
EMetric.instIsCountablyGeneratedUniformity
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
secondCountableTopologyEither_of_right
TopologicalSpace.instSecondCountableTopologyForallOfCountable
instCountable_of_discrete_submodule
Module.Finite.prod
FiniteDimensional.finiteDimensional_pi'
Subtype.finite
FiniteDimensional.rclike_to_real
ZSpan.instDiscreteTopologySubtypeMemSubmoduleIntSpanRangeCoeBasisRealOfFinite
instIsZLatticeRealSpan
MeasureTheory.exists_ne_zero_mem_lattice_of_measure_mul_two_pow_lt_measure
Prod.borelSpace
Pi.borelSpace
instIsAddHaarMeasureMixedSpaceVolume
convexBodyLT_neg_mem
convexBodyLT_convex
mem_span_fractionalIdealLatticeBasis
Submodule.mem_toAddSubgroup
instNontrivialMixedSpace
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
convexBodyLT_mem
exists_ne_zero_mem_ideal_lt' πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
minkowskiBound
DFunLike.coe
MeasureTheory.Measure
mixedSpace
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real
Real.measureSpace
NumberField.InfinitePlace.IsComplex
Complex
measureSpaceOfInnerProductSpace
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Complex.measurableSpace
Complex.borelSpace
Set
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
convexBodyLT'
FractionalIdeal
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
SetLike.instMembership
FractionalIdeal.instSetLike
Units.val
MonoidWithZero.toMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
FractionalIdeal.semifield
NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Real.instLT
NumberField.InfinitePlace.instFunLikeReal
NNReal.toReal
abs
Real.lattice
Real.instAddGroup
Complex.re
RingHom
Semiring.toNonAssocSemiring
Complex.instSemiring
RingHom.instFunLike
NumberField.InfinitePlace.embedding
Real.instOne
Complex.im
Monoid.toNatPow
Real.instMonoid
β€”NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Complex.instFiniteDimensionalReal
Complex.borelSpace
NumberField.instFreeIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule
ZSpan.isAddFundamentalDomain'
Finite.of_fintype
NumberField.instFiniteIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule
Prod.opensMeasurableSpace
Pi.opensMeasurableSpace
Subtype.countable
Finite.to_countable
instSecondCountableTopologyReal
BorelSpace.opensMeasurable
Real.borelSpace
PolishSpace.toSecondCountableTopology
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
secondCountable_of_proper
Complex.instProperSpace
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
Complex.instCompleteSpace
EMetric.instIsCountablyGeneratedUniformity
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
secondCountableTopologyEither_of_right
TopologicalSpace.instSecondCountableTopologyForallOfCountable
instCountable_of_discrete_submodule
Module.Finite.prod
FiniteDimensional.finiteDimensional_pi'
Subtype.finite
FiniteDimensional.rclike_to_real
ZSpan.instDiscreteTopologySubtypeMemSubmoduleIntSpanRangeCoeBasisRealOfFinite
instIsZLatticeRealSpan
MeasureTheory.exists_ne_zero_mem_lattice_of_measure_mul_two_pow_lt_measure
Prod.borelSpace
Pi.borelSpace
instIsAddHaarMeasureMixedSpaceVolume
convexBodyLT'_neg_mem
convexBodyLT'_convex
mem_span_fractionalIdealLatticeBasis
Submodule.mem_toAddSubgroup
instNontrivialMixedSpace
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
convexBodyLT'_mem
exists_ne_zero_mem_ideal_of_norm_le πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
minkowskiBound
DFunLike.coe
MeasureTheory.Measure
mixedSpace
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real
Real.measureSpace
NumberField.InfinitePlace.IsComplex
Complex
measureSpaceOfInnerProductSpace
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Complex.measurableSpace
Complex.borelSpace
Set
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
convexBodySum
FractionalIdeal
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
SetLike.instMembership
FractionalIdeal.instSetLike
Units.val
MonoidWithZero.toMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
FractionalIdeal.semifield
NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Real.instLE
Real.instRatCast
abs
Rat.instLattice
Rat.addGroup
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
Rat.commRing
MonoidHom.instFunLike
Algebra.norm
DivisionRing.toRatAlgebra
NumberField.to_charZero
Monoid.toNatPow
Real.instMonoid
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
Module.finrank
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Rat.commSemiring
β€”NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Complex.instFiniteDimensionalReal
Complex.borelSpace
Mathlib.Tactic.Contrapose.contrapose₁
convexBodySum_volume_eq_zero_of_le_zero
le_of_lt
minkowskiBound_pos
NumberField.to_charZero
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
Module.finrank_pos
commRing_strongRankCondition
Rat.nontrivial
NumberField.to_finiteDimensional
Rat.isDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
IsLocalRing.toNontrivial
Field.instIsLocalRing
div_nonneg
Nat.cast_nonneg
NumberField.instFreeIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule
ZSpan.isAddFundamentalDomain'
Finite.of_fintype
NumberField.instFiniteIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule
Prod.opensMeasurableSpace
Pi.opensMeasurableSpace
Subtype.countable
Finite.to_countable
instSecondCountableTopologyReal
BorelSpace.opensMeasurable
Real.borelSpace
PolishSpace.toSecondCountableTopology
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
secondCountable_of_proper
Complex.instProperSpace
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
Complex.instCompleteSpace
EMetric.instIsCountablyGeneratedUniformity
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
secondCountableTopologyEither_of_right
TopologicalSpace.instSecondCountableTopologyForallOfCountable
instCountable_of_discrete_submodule
Module.Finite.prod
FiniteDimensional.finiteDimensional_pi'
Subtype.finite
FiniteDimensional.rclike_to_real
ZSpan.instDiscreteTopologySubtypeMemSubmoduleIntSpanRangeCoeBasisRealOfFinite
instIsZLatticeRealSpan
MeasureTheory.exists_ne_zero_mem_lattice_of_measure_mul_two_pow_le_measure
Prod.borelSpace
Pi.borelSpace
instNontrivialMixedSpace
instIsAddHaarMeasureMixedSpaceVolume
ZSpan.instDiscreteTopologySubtypeMemAddSubgroupToAddSubgroupIntSpanRangeCoeBasisRealOfFinite
convexBodySum_neg_mem
convexBodySum_convex
convexBodySum_compact
mem_span_fractionalIdealLatticeBasis
Submodule.mem_toAddSubgroup
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Real.rpow_natCast
Real.rpow_le_rpow_iff
Rat.cast_abs
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Real.rpow_nonneg
Real.rpow_mul
mul_inv_cancelβ‚€
Nat.cast_ne_zero
RCLike.charZero_rclike
ne_of_gt
Real.rpow_one
le_div_iffβ‚€'
le_trans
Complex.instNontrivial
NumberField.InfinitePlace.sum_mult_eq
Nat.cast_sum
Finset.prod_congr
le_of_eq
Real.geom_mean_le_arith_mean
AbsoluteValue.nonneg
convexBodySum_mem
exists_ne_zero_mem_ringOfIntegers_lt πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
minkowskiBound
Units
FractionalIdeal
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
MonoidWithZero.toMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
FractionalIdeal.semifield
NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Units.instOne
DFunLike.coe
MeasureTheory.Measure
mixedSpace
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real
Real.measureSpace
NumberField.InfinitePlace.IsComplex
Complex
measureSpaceOfInnerProductSpace
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Complex.measurableSpace
Complex.borelSpace
Set
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
convexBodyLT
Real.instLT
NumberField.InfinitePlace.instFunLikeReal
NumberField.RingOfIntegers.val
NNReal.toReal
β€”NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Complex.instFiniteDimensionalReal
Complex.borelSpace
exists_ne_zero_mem_ideal_lt
FractionalIdeal.mem_one_iff
NumberField.RingOfIntegers.coe_ne_zero_iff
exists_ne_zero_mem_ringOfIntegers_lt' πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
minkowskiBound
Units
FractionalIdeal
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
MonoidWithZero.toMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
FractionalIdeal.semifield
NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Units.instOne
DFunLike.coe
MeasureTheory.Measure
mixedSpace
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real
Real.measureSpace
NumberField.InfinitePlace.IsComplex
Complex
measureSpaceOfInnerProductSpace
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Complex.measurableSpace
Complex.borelSpace
Set
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
convexBodyLT'
Real.instLT
NumberField.InfinitePlace.instFunLikeReal
NumberField.RingOfIntegers.val
NNReal.toReal
abs
Real.lattice
Real.instAddGroup
Complex.re
RingHom
Semiring.toNonAssocSemiring
Complex.instSemiring
RingHom.instFunLike
NumberField.InfinitePlace.embedding
Real.instOne
Complex.im
Monoid.toNatPow
Real.instMonoid
β€”NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Complex.instFiniteDimensionalReal
Complex.borelSpace
exists_ne_zero_mem_ideal_lt'
FractionalIdeal.mem_one_iff
NumberField.RingOfIntegers.coe_ne_zero_iff
exists_ne_zero_mem_ringOfIntegers_of_norm_le πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
minkowskiBound
Units
FractionalIdeal
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
MonoidWithZero.toMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
FractionalIdeal.semifield
NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Units.instOne
DFunLike.coe
MeasureTheory.Measure
mixedSpace
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real
Real.measureSpace
NumberField.InfinitePlace.IsComplex
Complex
measureSpaceOfInnerProductSpace
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Complex.measurableSpace
Complex.borelSpace
Set
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
convexBodySum
Real.instLE
Real.instRatCast
abs
Rat.instLattice
Rat.addGroup
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
Rat.commRing
MonoidHom.instFunLike
Algebra.norm
DivisionRing.toRatAlgebra
NumberField.to_charZero
NumberField.RingOfIntegers.val
Monoid.toNatPow
Real.instMonoid
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
Module.finrank
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Rat.commSemiring
β€”NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Complex.instFiniteDimensionalReal
Complex.borelSpace
NumberField.to_charZero
exists_ne_zero_mem_ideal_of_norm_le
FractionalIdeal.mem_one_iff
NumberField.RingOfIntegers.coe_ne_zero_iff
exists_primitive_element_lt_of_isComplex πŸ“–mathematicalNumberField.InfinitePlace.IsComplex
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
minkowskiBound
Units
FractionalIdeal
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
MonoidWithZero.toMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
FractionalIdeal.semifield
NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Units.instOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
convexBodyLT'Factor
IntermediateField.adjoin
Rat.instField
DivisionRing.toRatAlgebra
NumberField.to_charZero
Set
Set.instSingletonSet
NumberField.RingOfIntegers.val
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Real
Real.instLT
DFunLike.coe
NumberField.InfinitePlace
NumberField.InfinitePlace.instFunLikeReal
Real.sqrt
Real.instAdd
Real.instOne
Monoid.toNatPow
Real.instMonoid
NNReal.toReal
β€”NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Complex.instFiniteDimensionalReal
Complex.borelSpace
convexBodyLT'_volume
Finset.prod_erase_mul
Finset.mem_univ
Finset.prod_congr
ite_pow
one_pow
Finset.prod_ite_eq'
NumberField.InfinitePlace.not_isReal_iff_isComplex
one_mul
NNReal.sq_sqrt
NumberField.to_charZero
exists_ne_zero_mem_ringOfIntegers_lt'
NumberField.is_primitive_element_of_infinitePlace_lt
NumberField.InfinitePlace.norm_embedding_eq
Real.lt_sqrt
norm_nonneg
Complex.re_add_im
Complex.norm_add_mul_I
Real.sq_sqrt
add_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Even.pow_nonneg
IsStrictOrderedRing.toIsOrderedRing
Real.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Nat.instAtLeastTwoHAddOfNat
even_two_mul
add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
sq_abs
sq_lt_one_iffβ‚€
IsStrictOrderedRing.toPosMulStrictMono
Real.instZeroLEOneClass
abs_nonneg
sq_lt_sq
NNReal.abs_eq
lt_of_lt_of_le
NNReal.coe_one
Real.le_sqrt'
zero_lt_one
NeZero.charZero_one
RCLike.charZero_rclike
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
contravariant_lt_of_covariant_le
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
exists_primitive_element_lt_of_isReal πŸ“–mathematicalNumberField.InfinitePlace.IsReal
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
minkowskiBound
Units
FractionalIdeal
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
MonoidWithZero.toMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
FractionalIdeal.semifield
NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Units.instOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
convexBodyLTFactor
IntermediateField.adjoin
Rat.instField
DivisionRing.toRatAlgebra
NumberField.to_charZero
Set
Set.instSingletonSet
NumberField.RingOfIntegers.val
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Real
Real.instLT
DFunLike.coe
NumberField.InfinitePlace
NumberField.InfinitePlace.instFunLikeReal
NNReal.toReal
NNReal
NNReal.instMax
instOneNNReal
β€”NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Complex.instFiniteDimensionalReal
Complex.borelSpace
convexBodyLT_volume
Finset.prod_erase_mul
Finset.mem_univ
Finset.prod_congr
ite_pow
one_pow
Finset.prod_ite_eq'
one_mul
pow_one
NumberField.to_charZero
exists_ne_zero_mem_ringOfIntegers_lt
NumberField.is_primitive_element_of_infinitePlace_lt
lt_of_lt_of_le
NNReal.coe_max
minkowskiBound_lt_top πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
minkowskiBound
Top.top
instTopENNReal
β€”NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
ENNReal.mul_lt_top
Complex.instFiniteDimensionalReal
Complex.borelSpace
Bornology.IsBounded.measure_lt_top
prod_properSpace
pi_properSpace
instProperSpaceReal
Complex.instProperSpace
MeasureTheory.Measure.instIsFiniteMeasureOnCompactsProdVolume
MeasureTheory.Measure.instIsFiniteMeasureOnCompactsForallVolumeOfSigmaFinite
MeasureTheory.Measure.IsAddHaarMeasure.sigmaFinite
instIsAddHaarMeasureVolume
FiniteDimensional.rclike_to_real
Real.borelSpace
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
instIsTopologicalAddGroupReal
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
MeasureTheory.Measure.IsAddHaarMeasure.toIsFiniteMeasureOnCompacts
SeminormedAddCommGroup.toIsTopologicalAddGroup
secondCountable_of_proper
ZSpan.fundamentalDomain_isBounded
Real.instIsStrictOrderedRing
Finite.of_fintype
NumberField.instFiniteIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule
instHasSolidNormReal
ENNReal.pow_lt_top
ENNReal.ofNat_lt_top
minkowskiBound_pos πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
minkowskiBound
β€”NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
ENNReal.mul_pos
Complex.instFiniteDimensionalReal
Complex.borelSpace
ZSpan.measure_fundamentalDomain_ne_zero
Finite.of_fintype
NumberField.instFiniteIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule
Prod.borelSpace
Pi.borelSpace
Subtype.countable
Finite.to_countable
instSecondCountableTopologyReal
Real.borelSpace
PolishSpace.toSecondCountableTopology
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
secondCountable_of_proper
Complex.instProperSpace
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
Complex.instCompleteSpace
EMetric.instIsCountablyGeneratedUniformity
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
secondCountableTopologyEither_of_right
TopologicalSpace.instSecondCountableTopologyForallOfCountable
instIsAddHaarMeasureMixedSpaceVolume
ENNReal.pow_ne_zero
Nat.instAtLeastTwoHAddOfNat
two_ne_zero
CharZero.NeZero.two
ENNReal.instCharZero
norm_le_convexBodySumFun πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
mixedSpace
Prod.toNorm
NormedRing.toNorm
Pi.normedRing
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
NormedCommRing.toNormedRing
Real.normedCommRing
NumberField.InfinitePlace.IsComplex
Complex
NormedField.toNormedCommRing
Complex.instNormedField
convexBodySumFun
β€”Finset.univ_nonempty
NumberField.instNonemptyInfinitePlaceOfRingHomComplex
NumberField.Embeddings.instNonemptyRingHom
Complex.instCharZero
Complex.isAlgClosed
norm_eq_sup'_normAtPlace
Finset.sup'_le_iff
convexBodySumFun_apply
Finset.add_sum_erase
Finset.mem_univ
le_add_of_le_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
le_mul_of_one_le_left
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
normAtPlace_nonneg
NumberField.InfinitePlace.one_le_mult
Finset.sum_nonneg
mul_nonneg
IsOrderedRing.toPosMulMono
LT.lt.le
Nat.cast_pos
Real.instNontrivial
NumberField.InfinitePlace.mult_pos
one_le_convexBodyLT'Factor πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instOneNNReal
convexBodyLT'Factor
β€”one_le_mul
NNReal.mulLeftMono
one_le_powβ‚€
IsStrictOrderedRing.toZeroLEOneClass
NNReal.instIsStrictOrderedRing
IsOrderedRing.toPosMulMono
NNReal.instIsOrderedRing
one_le_two
NNReal.addLeftMono
Real.instZeroLEOneClass
Real.instIsOrderedRing
LE.le.trans
Nat.instAtLeastTwoHAddOfNat
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.two_le_pi
one_le_convexBodyLTFactor πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instOneNNReal
convexBodyLTFactor
β€”one_le_mul
NNReal.mulLeftMono
one_le_powβ‚€
IsStrictOrderedRing.toZeroLEOneClass
NNReal.instIsStrictOrderedRing
IsOrderedRing.toPosMulMono
NNReal.instIsOrderedRing
one_le_two
NNReal.addLeftMono
Real.instZeroLEOneClass
Real.instIsOrderedRing
LE.le.trans
Nat.instAtLeastTwoHAddOfNat
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.two_le_pi
volume_fundamentalDomain_fractionalIdealLatticeBasis πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
mixedSpace
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real
Real.measureSpace
NumberField.InfinitePlace.IsComplex
Complex
measureSpaceOfInnerProductSpace
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Complex.measurableSpace
Complex.borelSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
ZSpan.fundamentalDomain
Module.Free.ChooseBasisIndex
Submodule
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
SetLike.instMembership
Submodule.setLike
FractionalIdeal.coeToSubmodule
nonZeroDivisors
Semiring.toMonoidWithZero
Units.val
FractionalIdeal
MonoidWithZero.toMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
FractionalIdeal.semifield
NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Int.instSemiring
Submodule.addCommMonoid
AddCommGroup.toIntModule
Submodule.addCommGroup
CommRing.toRing
Ring.toAddCommGroup
NumberField.instFreeIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule
Real.normedField
Prod.normedAddCommGroup
Pi.normedAddCommGroup
Real.normedAddCommGroup
Prod.normedSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Pi.normedSpace
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
NormedField.toNormedCommRing
Complex.instNormedField
fractionalIdealLatticeBasis
Real.linearOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
ENNReal.instCommSemiring
ENNReal.ofReal
Real.instRatCast
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
FractionalIdeal.commSemiring
Rat.semiring
MonoidWithZeroHom.funLike
FractionalIdeal.absNorm
NumberField.RingOfIntegers.instFreeInt
Module.IsNoetherian.finite
NumberField.RingOfIntegers.instIsNoetherianInt
latticeBasis
β€”NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.instFreeIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule
NumberField.RingOfIntegers.instFreeInt
NumberField.instFiniteIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule
Module.IsNoetherian.finite
NumberField.RingOfIntegers.instIsNoetherianInt
Module.finrank_eq_card_chooseBasisIndex
commRing_strongRankCondition
Int.instNontrivial
NumberField.fractionalIdeal_rank
Complex.instFiniteDimensionalReal
Complex.borelSpace
ZSpan.fundamentalDomain_reindex
ZSpan.measure_fundamentalDomain
Prod.borelSpace
Pi.borelSpace
Subtype.countable
Finite.to_countable
Finite.of_fintype
instSecondCountableTopologyReal
Real.borelSpace
PolishSpace.toSecondCountableTopology
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
secondCountable_of_proper
Complex.instProperSpace
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
Complex.instCompleteSpace
EMetric.instIsCountablyGeneratedUniformity
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
secondCountableTopologyEither_of_right
TopologicalSpace.instSecondCountableTopologyForallOfCountable
instIsAddHaarMeasureMixedSpaceVolume
NumberField.to_charZero
Module.Basis.coe_reindex
fractionalIdealLatticeBasis_apply
det_basisOfFractionalIdeal_eq_norm

(root)

Definitions

NameCategoryTheorems
ConvexBody πŸ“–CompData
15 mathmath: ConvexBody.coe_smul, ConvexBody.coe_mk, ConvexBody.convex, ConvexBody.ext_iff, ConvexBody.isBounded, ConvexBody.nonempty, ConvexBody.isClosed, ConvexBody.isCompact, ConvexBody.hausdorffDist_coe, ConvexBody.hausdorffEDist_coe, ConvexBody.hausdorffEdist_coe, ConvexBody.coe_add, ConvexBody.coe_nsmul, ConvexBody.coe_smul', ConvexBody.coe_zero

---

← Back to Index